鲸鱼算法(WOA)matlab实现


算法介绍

鲸鱼算法(Whale Optimization Algorithm)是根据鲸鱼围捕猎物的行为而提出的算法。鲸鱼是一种群居的哺乳动物,在捕猎时会对猎物进行驱赶和围捕。
在这里插入图片描述

鲸鱼算法中,每个鲸鱼的位置代表了一个可行解。

在鲸鱼群捕猎过程中,每只鲸鱼有两种行为,一种是包围猎物,所有的鲸鱼都向着其他鲸鱼前进;另一种是汽包网,鲸鱼环形游动喷出气泡来驱赶猎物。

在每一代的游动中,鲸鱼们会随机选择这两种行为来进行捕猎。在鲸鱼进行包围猎物的行为中,鲸鱼将会随机选择是向着最优位置的鲸鱼游去还是随机选择一只鲸鱼作为自己的目标,并向其靠近。

(具体算法介绍请加下方微信获取)

部分代码展示

clear all 
clc

SearchAgents_no=30; % 查册代理人数

Function_name='F1'; % 从F1到F23的测试函数名称(123)  

Max_iteration=500; % 最大迭代次数
%% 加载所选基准测试功能的详细信息  
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,WOA_cg_curve]=WOA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',[269   240   660   290])
%% Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])

%% Draw objective space
subplot(1,2,2);
semilogy(WOA_cg_curve,'Color','r', 'LineWidth',3)
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('WOA')

display(['The best solution obtained by WOA is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by WOA is : ', num2str(Best_score)]);

运行结果

在这里插入图片描述

代码获取途径

 添加vx: shuxuexiaobaibututou,即可获取全部代码以及论文(50元)。
 其他近些年提出的新型智能优化算法也可加微信咨询!
鲸鱼算法(WOA)

  • 3
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 19
    评论
### 回答1: 鲸鱼算法(Whale Algorithm)是一种基于鲸鱼行为的优化算法,它模拟了鲸鱼体行为来解决优化问题。下面将介绍如何用Matlab实现鲸鱼算法。 1. 初始化参数: - 设置种大小N,最大迭代次数MaxIter。 - 初始化鲸鱼位置:随机生成N个鲸鱼的位置,每个位置是一个向量,代表问题的解。 - 初始化鲸鱼适应度:计算每个鲸鱼位置的适应度值。 2. 迭代更新: - 重复以下步骤直到达到最大迭代次数: - 根据适应度值对鲸鱼位置进行排序,选取适应度最好的鲸鱼作为领头鲸。 - 更新每个鲸鱼位置: - 如果当前迭代次数小于一半的最大迭代次数,则使用以下公式更新位置: - 新位置 = 领头鲸位置 + A * D,其中A是一个随机权重矩阵,D是领头鲸位置和当前鲸鱼位置的距离向量。 - 否则,使用以下公式更新位置: - 新位置 = D * R - 当前位置,其中D是当前位置与领头鲸位置的距离向量,R是一个随机矩阵。 - 对新位置进行边界限制。 - 更新适应度值。 3. 输出结果: - 输出适应度最好的鲸鱼位置作为最优解。 鲸鱼算法的优势在于其能够并行搜索解空间,能够快速收敛且具有较高的搜索精度。对于特定的优化问题,可以通过调整初始化参数和更新公式来进一步优化算法的性能。通过使用Matlab实现,我们可以很方便地进行调试和结果分析。 ### 回答2: 鲸鱼算法(Whale Algorithm)是一种基于鲸鱼体行为的优化算法,模拟了鲸鱼的搜索和追踪特性。这种算法被广泛应用于问题的求解和优化,其能够较好地处理复杂问题。 在MATLAB实现鲸鱼算法,需要按照以下步骤进行: 1. 初始化参数:确定鲸鱼个体的数量、搜索空间的范围、迭代次数、鲸鱼的初始位置和速度等。 2. 随机初始化鲸鱼的位置和速度,并计算适应度函数值。 3. 根据适应度函数值,选择适应度最好的鲸鱼作为全局最优解。 4. 针对每只鲸鱼,通过随机选择和更新位置,根据鲸鱼间的相对位置和速度来进行搜索和调整。 5. 对于每次迭代,根据目标函数的最优解来判断是否满足停止准则,如果满足则结束迭代,否则继续进行步骤4。 6. 在经过指定的迭代次数之后,输出最优解,即全局最优解。 在MATLAB实现鲸鱼算法,可以使用循环结构进行迭代计算,使用if语句进行条件判断。根据问题的具体情况,需要定义目标函数的表达式,并进行适应度评估和解的更新。 总之,鲸鱼算法是一种强大的优化算法,利用鲸鱼的行为特性来进行搜索和优化。在MATLAB实现鲸鱼算法,需要注意参数的设置和目标函数的表达式,通过迭代计算和更新位置来寻找全局最优解。 ### 回答3: 鲸鱼算法 (Whale Optimization Algorithm, WOA) 是一种基于仿生学思想的优化算法,灵感来自于鲸鱼体行为。它是一种智能化的优化方法,常用于解决各种问题,包括函数优化、参数调优等。下面是用MATLAB实现鲸鱼算法的一般步骤和思路: 1. 确定问题:首先,需要明确要解决的问题的目标函数以及定义搜索空间的约束条件。 2. 初始化种:根据搜索空间的约束条件,随机生成初代鲸鱼个体的位置和速度。位置表示问题的解空间,速度代表个体在搜索空间中的移动方向和速率。 3. 设置算法参数:包括迭代次数、鲸鱼个体的最大速度等。 4. 进化过程: - 迭代开始时,计算每个鲸鱼的适应度,并标记最佳个体。 - 更新每个鲸鱼的速度和位置,根据以下公式计算: - 速度更新公式:V = V + A * (X_best - X) + C * (X_rand - X) - 位置更新公式:X = X + V 其中,V表示速度,X表示位置,X_best是最佳个体位置,X_rand是随机选择的个体位置,A和C是算法参数。 - 检查个体的位置是否超出搜索空间的约束条件,如果超出则进行修正。 - 如果新的位置的适应度更好,则更新最佳解。 - 重复以上步骤,直到达到设定的迭代次数。 5. 返回最佳解:根据迭代过程中记录的最佳个体的位置,返回求解得到的最佳解。 这是鲸鱼算法的简单实现过程,实际应用中,还可以根据具体问题进行一些优化和改进。通过在MATLAB实现这个算法,可以解决各种实际问题,优化目标函数,寻找最佳参数等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学小白不秃头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值