Taco数据集的yolo格式

文章提供了将Taco数据集的1500张图片及其COCO格式的标注转化为YOLO格式的步骤,便于使用YOLO算法进行垃圾目标检测。同时附带了已转换为中文标签的yaml文件链接,以及数据集和标注的下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将Taco数据集的1500张图片和原本的coco标注改为yolo格式,方便用yolo算法对垃圾数据集进行目标检测操作。并配上改成中文标签的yaml文件。

TACO原数据集GitHub链接:

GitHub - pedropro/TACO: 🌮 Trash Annotations in Context Dataset Toolkit

yaml文件链接:https://pan.baidu.com/s/1ZI9GKeRoysCMYK_y6bvebQ
提取码:1234

数据集和标注链接:https://pan.baidu.com/s/1Vo15u1_-k9P4oU1-R1xxcw
提取码:1234

为了深入了解如何使用TACO垃圾数据集进行目标检测模型的训练和测试,首先需要获取这份资源,它提供了一个面向垃圾检测的专用数据集,包含6004张图片和18种垃圾类别。这个数据集采用YOLO格式组织,适合于YOLO系列框架,如yolov5、yolov7、yolov8、yolov10等。 参考资源链接:[TACO垃圾数据集YOLO格式6004张图片18类别](https://wenku.csdn.net/doc/4wrvdzn5qa?spm=1055.2569.3001.10343) 使用数据集之前,首先需要解压包含6004张图片和相关配置文件的7z压缩文件。其中,data.yaml文件是一个关键文件,它包含了数据集的路径和类别信息,需要根据实际情况调整以匹配数据集的实际位置和组织结构。 接下来,使用YOLO系列框架的训练脚本进行模型训练。以yolov5为例,通常需要进行以下步骤: 1. 下载yolov5源代码并安装依赖库。 2. 将解压后的TACO垃圾数据集和调整后的data.yaml文件放置在适当的目录下。 3. 修改yolov5的配置文件以适应新的类别数(例如18)和数据集路径。 4. 运行训练脚本,开始训练过程。可以配置合适的训练参数,如学习率、批次大小、训练周期等。 5. 在训练结束后,使用验证集评估模型性能,确保模型具有良好的泛化能力。 6. 使用训练好的模型进行测试,并通过各种指标(如准确率、召回率等)评估模型性能。 在这个过程中,可以通过调整模型结构、训练策略以及数据增强等手段来优化模型。此外,也可以对yolov7、yolov8、yolov10进行类似的训练和测试流程,因为这些框架都支持YOLO格式数据集。 完成上述步骤后,就可以将训练好的模型部署到实际应用中,例如用于城市清洁监控或垃圾分类站点,以实现实时的垃圾检测和分类。 通过这样的流程,开发者不仅能掌握如何使用TACO垃圾数据集训练目标检测模型,还能学会如何优化模型以适应特定应用场景。为了深入理解和实践这些技术,建议查阅相关的技术文档和教程,以获得更全面和深入的知识。 参考资源链接:[TACO垃圾数据集YOLO格式6004张图片18类别](https://wenku.csdn.net/doc/4wrvdzn5qa?spm=1055.2569.3001.10343)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值