LCL型三相并网变流器线性建模笔记(1)

目录

 0 开头语

1 逆变器拓扑与控制

2 无锁相环线性数学模型及其输出阻抗

3 含锁相环线性数学模型及其输出阻抗

3.1 稳态工作点计算

3.2 小信号模型推导

4 结语


0 开头语

三相并网变流器的运行稳定性受到滤波器参数,电网参数与控制器参数影响,研究并网变流器的稳定性离不开对变流器系统的数学建模。三相并网变流器区别于DC/DC斩波电路建模方法,忽略本身需要滤除的高频分量影响,在宏观的工频周期尺度下进行平均值模型线性化分析。

三相并网变流器为滤除纹波,常用L型滤波器,LC滤波器,LCL滤波器以及LLCL滤波器。LCL滤波器相较于L型滤波器,能够稍微降低单个滤波电感,同时能够应用于离网下低谐波含量的三相电压输出场景;然而引入的电容支路带来了变流器与系统的谐振,并且会带来高频振荡问题。本文主要是对LCL滤波的三相并网变流器进行数学建模,总结在通过电流环PR控制下整体系统建模结果,重点梳理锁相环线性化过程与同步旋转坐标系下输出阻抗矩阵建模过程与结果

特别声明:本文仅发布在CSDN平台,禁止任何方式的转载甚至投自制,请尊重劳动成果!

1 LCL变流器拓扑与控制

如图1所示是所分析的LCL变流器及其控制系统,其中LCL滤波器中滤波电感及其电阻为L1和r1,滤波电容及其电阻C和rc,并网电感及其电阻为L2与r2,电网阻抗为Xg=wgLg,电网电压为Us,并网点电压为Upcc,滤波电感电流为ILabc,直流电压为udc。控制系统包括基于同步旋转坐标系的锁相环控制(SRF-PLL),直压控制与电流控制;电流控制采用PR控制,由于对于工频电流无差控制下谐振变换器仅对工频附近电流有较高增益,因此高频域下,电流控制可等效为比例控制。最后电流控制输出值与经过低通滤波器的前馈三相电压相加形成最后的三相调制电压(图中未标注低通滤波器)。

图1 LCL并网变流器结构与控制策略

2 无锁相环线性数学模型及其输出阻抗

当分析变流器强电网下高频振荡问题,锁相环影响程度较小,因而可从无锁相环的模型建立,变流器系统无需考虑线性化问题。

在静止坐标系下,电路的数学建模如下:

\left\{\begin{matrix} L_1\frac{\text{d}i_{Labc}}{\text{d}t}=-r_1i_{Labc}+u_{PWMabc}-u_{Cabc}\\ C\frac{\text{d}[u_c-r_C(i_{Labc}-i_{gabc})]}{\text{d}t}=i_{Labc}-i_{gabc}\\ L_2\frac{\text{d}i_{gabc}}{\text{d}t}=-r_2i_{gabc}+u_{Cabc}-u_{pccabc} \end{matrix}\right.

拉普拉斯变换后,复频域下电路模型如下:

\left\{\begin{matrix} i_{Labc}(s)=\frac{1}{L_1s+r_1}(u_{PWMabc}(s)-u_{Cabc}(s))\\ u_{Cabc}(s)=(\frac{1}{Cs}+r_C)(i_{Labc}(s)-i_{gabc}(s))\\ i_{gabc}(s)=\frac{1}{L_2s+r_2}(u_{Cabc}(s)-u_{pccabc}(s)) \end{matrix}\right.

根据电路与控制系统结构可画出下图所示的控制框图。控制中前馈电压需要进行低通滤波输入至调制电压,因此忽略前馈电压高频分量的影响。

图2 线性模型控制框图

对变流器系统在复频域下进行数学建模,经过计算,upcc至ig的传递函数为

H(s)=\frac{i_{g}}{u_{pcc}}=-\frac{G_{L2}}{1+\frac{G_{C}G_{L2}}{1+\frac{G_{L1}G_C}{1+G_{L1}G_{PR}G_{del}}}}

上述传递函数通过对图2的控制框图简化变换计算出来,可以看到输出阻抗H表达式简洁明了,但不能体现各参数对输出阻抗的影响。若进行展开分析,传递函数各系数表达式将非常夸张,因此常在控制框图分析或控制器设计时,假定一些理想化的取值与近似,实现传递函数零极点相消,降低输出阻抗阶数。

然而对各参数的分析,其实可通过对模型H采用控制变量法,通过计算软件(MATLAB等)直接绘制相应bode图,比较参数不同值下的频域特性,直观分析各参数变化带来的影响。 

3 含锁相环线性数学模型及其输出阻抗

由于锁相环中存在非线性运算,变流器系统需考虑对某一工作点的线性化问题。变流器系统能够对某一点线性化分析的根据是:

任何非线性曲线都可以通过某一点的极小区间(x\in [x_0-\Delta x,x_0+\Delta x])使得在区间内变化趋势(\frac{\text{d}f(x)}{\text{d}t})均视作常数。

这要求小信号需要足够小才能满足。对于变流器分析中,如果在稳态工作点上加入足够小的信号都能够响应大的该频率信号,则该稳态工作点是不稳定的。因此作者认为,小信号模型用在对某个工作点上的稳定性分析是可行,对变流器输出谐波增益分析上仅能分析该点可能产生的发散性谐波问题。

3.1 稳态工作点计算

在稳态工作点下,在以工频角速度旋转的同步旋转坐标系下电路满足:

\left\{\begin{matrix} U_{PWMd}-U_{Cd}=r_1I_{Ld}-\omega L_1I_{Lq}\\ U_{PWMq}-U_{Cq}=r_1I_{Lq}+\omega L_1I_{Ld} \end{matrix}\right.

\left\{\begin{matrix} I_{Ld}-I_{gd}=-\frac{\omega C}{\sqrt{1+r_C^2\omega ^2C^2}}U_{cq}+\frac{r_C\omega ^2C^2}{\sqrt{1+r_C^2\omega ^2C^2}}U_{cd}\\ I_{Lq}-I_{gq}=\frac{r_C\omega ^2C^2}{\sqrt{1+r_C^2\omega ^2C^2}}U_{cq}+\frac{\omega C}{\sqrt{1+r_C^2\omega ^2C^2}}U_{cd} \end{matrix}\right.

\left\{\begin{matrix} U_{Cd}-U_{pccd}=r_2I_{gd}-\omega L_2I_{gq}\\ U_{Cq}-U_{pccq}=r_2I_{gq}+\omega L_2I_{gd} \end{matrix}\right.

\left\{\begin{matrix} P_{pcc}=U_{pccd}I_{gd}+U_{pccq}I_{gq}\\ Q_{pcc}=U_{pccq}I_{gd}-U_{pccd}I_{gq} \end{matrix}\right.

控制器在稳态工作点已保证变流器输出相应UPWM电压,小信号分析中一般忽略控制器内部稳态下的积分值。(建议巧妙运用矩阵进行计算,比如第二个式子存在两个状态变量的微分,需要合理通过矩阵运算得出相应系数)

3.2 小信号模型推导

接下来对PCC点电压注入频率为\omega的小信号,记为\hat{u}_{pcc},后续小信号变量均在变量上加“帽子”符号;实际电路中的变量在右上角记上s,例如实际滤波电感电流为“\hat{i}_L^s”,控制器中的电气量在右上角记上c,以区分控制器内外或者坐标变换前后的电气量,例如控制器中进入控制计算的滤波电感电流为“\hat{i}_L^c”。

在同步旋转坐标系中,非线性运算主要来自锁相环输出相位的运算。由于锁相环输入upcc进行锁相控制,PCC电压的扰动会对锁相环输出相位带来影响,因此需要具体分析锁相环小信号分析下的传递函数。

锁相环的控制结构方程可写为:

\theta_c=\frac{1}{s}(k_{pllp}+\frac{k_{plli}}{s})u_{pccq}

在稳态工作点下,\theta _c=\theta _g,在注入小信号后,锁相环会根据改变相位差使得三相电压矢量(方向一般与A相相同)时刻处于控制器同步旋转坐标系的d轴上,因此根据坐标轴列写下式并近似变换,最后得到由\hat{u}_{pccq}\hat{\theta}_c的信号通路图。

\left\{\begin{matrix} \hat{u}_{pccd}^c=U_{pccd}+\hat{u}_{pccd}^s-U_{pccd}\cos(\hat{\theta}_c)\\ \hat{u}_{pccq}^c=\hat{u}_{pccq}^s-U_{pccd}\sin(\hat{\theta}_c) \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \hat{u}_{pccd}^c=\hat{u}_{pccd}^s\\ \hat{u}_{pccq}^c=\hat{u}_{pccq}^s-U_{pccd}\hat{\theta}_c \end{matrix}\right.

图3 锁相环小信号通路

可以求出\hat{u}_{pccq}^s\hat{\theta}_c的闭环传递函数为:

G_{pll}(s)=\frac{(k_{pllp}+k_{plli}/s)}{s+U_{pccd}(k_{pllp}+k_{plli}/s)}

这个公式可以在许多关于小信号数学建模的文献里看到。

回到图1的控制策略中可以看到,控制策略中仅有参考电流采用反派克变换出现的非线性运算,因此仅需要对参考电流进行锁相环影响前后的变量区分。(需要注意的是,许多文献均在dq轴上做控制,因此会有至少两个电气量需要区分)

控制器输入或计算得到的同步旋转坐标系下的参考电流假设为无波动的直流量(可通过滤波实现),在锁相环的影响下参考电流会出现相应波动,表达式可以如下列写:

\left\{\begin{matrix} \hat{I}_{LP}^{*c} =I_{Ld}^{*s}\cos(\omega t+\theta _g+\hat{\theta}_c)-I_{Ld}^{*s}\cos(\omega t+\theta _g)\\ \hat{I}_{LQ}^{*c} =I_{Lq}^{*s}\sin(\omega t+\theta _g+\hat{\theta}_c)-I_{Lq}^{*s}\sin(\omega t+\theta _g) \end{matrix}\right.

\Rightarrow \left\{\begin{matrix} \hat{I}_{LP}^{*c}=-I_{Ld}^{*s}\sin(\omega t+\theta _g)\hat{\theta}_c\\ \hat{I}_{LQ}^{*c}=I_{Lq}^{*s}\cos(\omega t+\theta _g)\hat{\theta}_c \end{matrix}\right.\overset{dq}{\rightarrow} \left\{\begin{matrix} \hat{I}_{Ld}^{*c}=-I_{Lq}^{*s}\hat{\theta}_c\\ \hat{I}_{Lq}^{*c}=I_{Ld}^{*s}\hat{\theta}_c \end{matrix}\right.

可以得到电压扰动下参考电流输入的扰动为:

\left\{\begin{matrix} \hat{I}_{Ld}^{*c}=-I_{Lq}^{*s}G_{pll}u_{pccq}\\ \hat{I}_{Lq}^{*c}=I_{Ld}^{*s}G_{pll}u_{pccq} \end{matrix}\right.

由于使用两个坐标系分析模型非常不便,统一在电路的同步旋转坐标系下推导模型(这就是为什么要把右上角为c的变量转换为右上角为s的变量)。由于PR控制是在abc静止坐标系下设计,因此需要转换到同步旋转坐标系下折算。

于是在电路的同步旋转坐标系下,将dq轴量用矩阵向量的方式表示,根据电路与控制系统结构可画出下图所示的控制框图。

其中

\mathbf{G}_{PR}(s+j\omega _g)=\begin{bmatrix} k_p+k_r\frac{2\xi \omega _cs+j2\xi \omega _c\omega _g}{s^2+(j2\omega _g+2\xi \omega _c)s+j2\xi \omega _c\omega _g} & -\omega _g L_1\\ \omega _g L_1 & k_p+k_r\frac{2\xi \omega _cs+j2\xi \omega _c\omega _g}{s^2+(j2\omega _g+2\xi \omega _c)s+j2\xi \omega _c\omega _g} \end{bmatrix}

\mathbf{G}_{del}(s)=\begin{bmatrix} \frac{1-0.75T_{del}s}{1+0.75T_{del}s} & 0\\ 0 & \frac{1-0.75T_{del}s}{1+0.75T_{del}s} \end{bmatrix}

\mathbf{G}_{L1}(s)=\begin{bmatrix} \frac{1}{L_1s+r_1} & -\omega _gL_1\\ \omega _gL_1 & \frac{1}{L_1s+r_1} \end{bmatrix}          \mathbf{G}_{L2}(s)=\begin{bmatrix} \frac{1}{L_2s+r_2} & -\omega _gL_2\\ \omega _gL_2 & \frac{1}{L_2s+r_2} \end{bmatrix}

\mathbf{G}_{C}(s)=\begin{bmatrix} \frac{sC+\frac{r_C\omega _g^2C^2}{\sqrt{1+r_C^2\omega _g^2C^2}}}{sCr_C+1} & -\frac{\omega _gC}{\sqrt{1+r_C^2\omega _g^2C^2}(sCr_C+1)}\\ \frac{\omega _gC}{\sqrt{1+r_C^2\omega _g^2C^2}(sCr_C+1)} & \frac{sC+\frac{r_C\omega _g^2C^2}{\sqrt{1+r_C^2\omega _g^2C^2}}}{sCr_C+1} \end{bmatrix}

\mathbf{H}_{plli}(s)=\begin{bmatrix} 0 & -I^{*s}_{Lq}G_{pll}\\ 0 & I^{*s}_{Ld}G_{pll} \end{bmatrix}

\mathbf{G}_{LP}(s)=\begin{bmatrix} \frac{1}{s/T_{v}+1} & 0\\ 0 & \frac{1}{s/T_{v}+1} \end{bmatrix}

于是,输出阻抗可表示为如下表达式如下:

\mathbf{G}_{o}=\frac{\hat{\mathbf{i}}_g}{\hat{\mathbf{u}}_{pcc}}= \mathbf{H}_g\mathbf{H}_v

其中

\mathbf{H}_v=\mathbf{\frac{G_CG_{L1}(G_{del}G_{PR}H_{plli}+G_{LP})}{1+G_{del}G_{PR}G_{L1}+G_{L1}G_C}-1}

\mathbf{H}_g=\mathbf{\frac{G_{L2}}{1+\frac{G_{C}G_{L2}}{1+\frac{G_{L1}G_C}{1+G_{del}G_{PR}G_{L1}}}}}

上述矩阵运算上,所有分式的矩阵形式均是如下计算方法,另外各传递函数矩阵相乘顺序不能交换,1代表单位矩阵。

\mathbf{\frac{X}{Y}}=\mathbf{Y^{-1}X}

 在这里可以发现,PR传递函数存在虚数值,虽然能够分析整体系统频域特性,但不便于在计算软件中建立线性系统模型。这里作者将在后面文章中进行详细分析。

4 结语

作者通过考虑锁相环前后对LCL变流器进行了分析,梳理了在所述控制策略下的输出阻抗数学模型建立过程与结果。

后续作者会对该模型进行仿真分析,并针对已有的分析简单梳理各参数带来的影响。欢迎读者对内容提问并对内容进行指正,后面也会对文中一些争议点以及没有详细分析的地方进行补充或修正。

 

撰写日期:2024.1.7

  • 31
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
三相LCL并网逆变器αβ轴仿真是指通过计算机仿真方法,对三相LCL并网逆变器在αβ轴坐标系下的工作状态进行模拟和分析。 首先需要了解LCL并网逆变器的基本结构和工作原理。LCL并网逆变器由两个滤波电感L和一个滤波电容C组成,其中的LCL滤波器用于减小逆变器输出的谐波和滤除谐振峰,保证系统的稳定性。在仿真过程中,通过建立逆变器的数学模,考虑系统的参数和控制策略,对逆变器的输入输出特性进行仿真分析。 在αβ轴坐标系下,逆变器可以用矢量控制算法进行仿真。矢量控制算法是一种常见的逆变器控制方式,具有响应速度快、准确性高的特点。仿真过程中,需根据逆变器的数学模和控制策略,计算出逆变器输出的αβ轴电流和电压。通过仿真软件,可以模拟不同工况下逆变器的工作状态,比如输入电压、频率的变化,负载的变化等,进而分析逆变器的性能和稳定性。 在仿真过程中,还可以进行参数变化的敏感度分析,即对系统的参数进行调整,观察对逆变器输出特性的影响。比如改变滤波电感L和滤波电容C的数值,观察逆变器输出谐波的变化情况。通过这种仿真方法,可以优化LCL并网逆变器的设计和控制策略,提高其性能和稳定性。 总之,通过三相LCL并网逆变器αβ轴仿真,可以对逆变器的工作状态进行模拟和分析,进而优化设计和控制策略,提高逆变器的性能和稳定性。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kazamii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值