ECOS基本介绍
ECOS(Embedded Conic Solver)是一个高效的开源优化求解器,主要用于解决线性规划(LP)、二次锥规划(SOCP)和指数锥规划等凸优化问题。它的设计目标是高效、鲁棒,并且能够嵌入在各种应用中。ECOS 特别适合在嵌入式系统和需要实时求解的大规模优化问题中使用。
ECOS特点
1.支持问题的类型:
(1)线性规划(LP):目标函数为线性函数,且约束条件也为线性不等式或者线性等式。
(2)二次锥规划(SOCP):目标函数为线性函数,约束条件为二次锥约束。
(3)指数锥规划:求解涉及到指数锥约束的问题。
2.高效性:
(1)ECOS使用内点法(Interior Point Method)进行求解,能够有效地处理大规模的优化问题。
(2)实现过程经过高度优化,在很多实际应用中效果出色。
3.适用于嵌入式设计:
(1)ECOS 的代码紧凑且高效,非常适合嵌入在资源受限的环境中,如嵌入式系统或移动设备中。
(2)它被设计为一个可移植的库,能够在多种平台上运行,包括 Windows、Linux 和 macOS。
4.易于使用
(1)ECOS 提供了简单的 API,易于集成到现有的项目中。
(2)它也有 Python 接口(通过 CVXPY),使得用户可以方便地在 Python 环境中进行优化求解。
ECOS应用领域
1.金融工程:投资组合优化、风险管理等。
2.控制系统:模型预测控制(MPC)、鲁棒控制等。
3.机器学习:支持向量机(SVM)、稀疏编码等。
4.通信网络:资源分配、流量优化等。
使用C/C++接口进行求解
考虑到嵌入式系统求解硬件资源有限,所以使用更为高效的C/C++接口进行开发。
基本使用步骤
1.Setup:求解器初始化,分配内存,初步处理输入参数等。
2.Solve:使用核心内点求解器进行求解,这是无需任何动态内存分配。
3.Cleanup:释放内存。
[Step 1]Setup
根据问题参数对求解器进行初始化
主要函数:
pwork* ECOS_setup(idxint n, idxint m, idxint p, idxint l, idxint
ncones