概率论-1 随机事件 & 概率

概率论-1 随机事件 & 概率

1 随机事件的关系 & 运算

1.1概念

随机事件:随机试验的结果,用A B C表示

image-20210623161036232 image-20210623161043387 image-20210623161106395 image-20210623161123697

样本空间:一切基本事件的总和

2 随机事件的概率

2.1 公理化定义

image-20210623161214631

2.2 条件概率

image-20210623161252343

注意:

1)条件概率也是一种概率,所有的概率的性质都适用

2)计算条件概率的两种方法

​ i)根据所给的条件缩小样本空间

​ ii)直接计算P(AB)和P(A)

2.3概率的基本公式

2.3.1 基本性质

2.3.2基本公式

1)乘法公式
P ( A B ) = { P ( A ) P ( B ∣ A ) ,  当  P ( A ) > 0 P ( B ) P ( A ∣ B ) ,  当  P ( B ) > 0 \boldsymbol{P}(A B)=\left\{\begin{array}{ll} \boldsymbol{P}(A) \boldsymbol{P}(B \mid A), & \text { 当 } \boldsymbol{P}(A)>0 \\ \boldsymbol{P}(B) \boldsymbol{P}(A \mid B), & \text { 当 } \boldsymbol{P}(B)>0 \end{array}\right. P(AB)={P(A)P(BA),P(B)P(AB),  P(A)>0  P(B)>0

P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 ⋯ A n − 1 ) ⋅ ( P ( A 1 ⋯ A n − 1 ) > 0 ) \boldsymbol{P}\left(A_{1} A_{2} \cdots A_{n}\right)=\boldsymbol{P}\left(A_{1}\right) \boldsymbol{P}\left(A_{2} \mid A_{1}\right) \boldsymbol{P}\left(A_{3} \mid A_{1} A_{2}\right) \cdots \boldsymbol{P}\left(A_{n} \mid A_{1} \cdots A_{n-1}\right) \cdot\left(\boldsymbol{P}\left(A_{1} \cdots A_{n-1}\right)>0\right) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1An1)(P(A1An1)>0)

2)全概率公式

事件完备组中所有事件的集合
P ( B ) = ∑ i = 1 n P ( B A i ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) \boldsymbol{P}(B)=\sum_{i=1}^{n} \boldsymbol{P}\left(B A_{i}\right)=\sum_{i=1}^{n} \boldsymbol{P}\left(A_{i}\right) \boldsymbol{P}\left(B \mid A_{i}\right) P(B)=i=1nP(BAi)=i=1nP(Ai)P(BAi)
当n=2时,上述公式可以写成:
P ( B ) = P ( A ) P ( B ∣ A ) + P ( A ˉ ) P ( B ∣ A ˉ ) \boldsymbol{P}(B)=\boldsymbol{P}(A) \boldsymbol{P}(B \mid A)+\boldsymbol{P}(\bar{A}) \boldsymbol{P}(B \mid \bar{A}) P(B)=P(A)P(BA)+P(Aˉ)P(BAˉ)
3)贝叶斯公式

事件完备组中任何一个事件的概率
P ( A m ∣ B ) = P ( B A m ) P ( B ) = P ( A m ) P ( B ∣ A m ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) ( 1 ⩽ m ⩽ n ) \boldsymbol{P}\left(A_{m} \mid B\right)=\frac{\boldsymbol{P}\left(B A_{m}\right)}{\boldsymbol{P}(B)}=\frac{\boldsymbol{P}\left(A_{m}\right) \boldsymbol{P}\left(B \mid A_{m}\right)}{\sum_{i=1}^{n} \boldsymbol{P}\left(A_{i}\right) \boldsymbol{P}\left(B \mid A_{i}\right)}(1 \leqslant m \leqslant n) P(AmB)=P(B)P(BAm)=i=1nP(Ai)P(BAi)P(Am)P(BAm)(1mn)
全概率公式和贝叶斯公式的关键在于找出完备事件组

2.4计算概率

1)直接算

​ i)古典概型
P ( A ) = A  所包含的基本事件个数  k  基本事件的总数  n = k n  .  \boldsymbol{P}(A)=\frac{A \text { 所包含的基本事件个数 } k}{\text { 基本事件的总数 } n}=\frac{k}{n} \text { . } P(A)= 基本事件的总数 nA 所包含的基本事件个数 k=nk . 
​ ii)几何概型
P ( A ) = S A S Ω \boldsymbol{P}(A)=\frac{S_{A}}{S_{\Omega}} P(A)=SΩSA
几何概型的样本空间无限,而古典概型的样本空间有限

2)概率分布计算:见第二章

3)频率估计概率
f n ( A ) = A  在  n  次试验中出现的次数  k  试验次数  n f_{n}(A)=\frac{A \text { 在 } n \text { 次试验中出现的次数 } k}{\text { 试验次数 } n} fn(A)= 试验次数 nA  n 次试验中出现的次数 k
4)概率推算

3 事件的独立性 & 独立重复实验

3.1 事件的独立性

3.1.1 独立性的定义

1)两个事件满足下式
P ( A B ) = P ( A ) P ( B ) \boldsymbol{P}(A B)=\boldsymbol{P}(A) \boldsymbol{P}(B) P(AB)=P(A)P(B)
2)三个事件满足下式

image-20210623163152440

3)n个事件发生的概率等于其概率的乘积

3.1.2 独立性的性质

1)AB为独立事件:

image-20210623163321762

2)n个事件相互独立

image-20210623163352118

3.2 独立重复实验 & 伯努利公式

3.2.1 独立重复实验

各事件相互独立,出现的概率相同,这样的实验叫做独立重复实验

如果事件数量=2,则为伯努利实验

3.2.2 伯努利公式-服从二项分布 B(n,p)

只管次数,不管顺序
P ( A k ) = C n k p k q n − k ( k = 0 , 1 , 2 , ⋯   , n ) , 其 中 0 < p < 1 , q = 1 − p \boldsymbol{P}\left(A_{k}\right)=\mathrm{C}_{n}^{k} p^{k} q^{n-k} \quad(k=0,1,2, \cdots, n), \quad 其中 0<p<1, q=1-p P(Ak)=Cnkpkqnk(k=0,1,2,,n),0<p<1,q=1p

4 总结

image-20210623163925398
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴哈哈就是我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值