概率论-1.1随机事件及其运算

确定性现象:只有一个结果的现象
随机现象:在一定条件下,并不总是出现相同结果的现象
样本空间:一切可能基本结果组成的集合
样本点:样本空间组成的基本单元
离散样本空间:样本点有限或可列
连续样本空间:样本点无限或不可列
(随机)事件:随机现象的某些样本点组成的集合
维恩图:任一事件A是相应样本空间的一个子集,常用一个长方形表示样本空间,用其他几何图形表示事件A
事件的发生:当子集A中某个样本点出现,就说明事件A发生了,或者说事件A发生当且仅当事件A中某样本点的出现
基本事件:样本空间中不可分割的基本单元
事件:由样本空间中单个元素组成的子集

事件的表示
集合表示,这是最基本的表示形式
用准确的语言表示
用等号或不等号把随机变量与某些实数连接起来表示

必然事件:样本空间本身
不可能事件:样本空间的最小子集,也就是空集
样本点与基本事件:样本点是指样本空间的基本组成单位,基本事件是指样本点的发生
一次实验只会出现一个基本事件(或者说只会出现一个样本点)
随机变量:用来表示随机现象结果的变量
事件之间的关系:包含、相等、相交、互不相容
事件间的运算:并、交、差、余(补)
事件A与B的并(AB):A与B所有样本点组成的集合
事件A与B的交:A与B相同样本点组成的集合
事件A对B的差(A-B):在事件A中而不在事件B中的样本点组成的集合
事件A的补(A头上一横线):所有在样本空间而不在事件A中的样本点组成的集合,又称A的对立事件
事件A的互斥:A对立事件的子事件
事件的运算性质:交换律、结合律、分配律、对偶律(德摩根律)
交换律:A并B=B并A,A且B=B且A
结合律:(A并B)并C=A并(B并C),(A且B)且C=A且(B且C)
分配律:A并(B交C)=(A并B)交(A并C),A交(B并C)=(A交B)并(A交C)
对偶律:(A并B)的对立=(A对立)交(B对立) ,(A交B)的对立=(A对立)并(B对立)
不可测集(不可度量集):
可测集(可度量集):
事件域:样本空间子集及其运算结果组成的集合类

事件域:
样本空间子集组成的集合W
W集合可列
满足并、交、叉、补运算封闭
则称W为事件域,又称(样本空间, W)为可测空间
例:样本空间a={w1, w2},a的事件域={ {空集} , {w1} , {w2} , {w1,w2} }
常见的两个事件域:
离散样本空间(有限,可列)内的一切子集组成的事件域
连续样本空间(R,R^2等)内的一切Borel集(如区间,矩形)扩展而成的事件域

概率:定义在事件域上的函数
随机变量:定义在样本空间上的函数

样本空间的分割:可列个互不相容且其并为样本空间的集合称为样本空间的一个分割

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值