Koopman operator的理解

文章介绍了Koopman算子如何通过升高维度将非线性动力学系统转化为线性问题进行求解。它在离散动力学系统中的应用涉及状态映射、无限维空间和特征分解,用于重构信号和处理复杂系统。
摘要由CSDN通过智能技术生成

最近在看论文时遇到一个新的知识,库普曼算子,于是上网查了一下什么时库普曼算子,库普曼算子有什么用。

1、Koopman Operator作用

Koopmain Operator将有限维非线性系统的分析问题转化为对一个无限维线性系统的分析

通俗来说:就是通过升高维度将非线性问题转化为对线性问题的求解,因为线性问题的求解会更为简单

2、Koopman Operator的一个简单例子

现在假设有一个动力学系统(dynamic system):

x_1'=a_1x_1

x_2'=a_2(x_2-x_1^2)

在这个系统中,由于存在平方,因此系统是二维非线性的,因此可以通过升高维度将系统转化为线性的。

令 y=\begin{bmatrix} y_1\\ y_2\\ y_3 \end{bmatrix}=\begin{bmatrix} x_1\\ x_2\\ x_1^2 \end{bmatrix}

因此可以得到

y_1'=x_1'=a_1y_1

y_2'=x_2'=a_2(y_2-y_3) 

y_3'={x_1^2}'=2x_1x_1'=2x_1a_1x_1=2a_1y_3

写成矩阵形式表达其动力方程,可以得到:

\frac{dy}{dt}=\begin{bmatrix} a_1 & 0 & 0\\ 0 & a_2 & -a_2\\ 0 & 0 &2a_1 \end{bmatrix}\begin{bmatrix} y_1\\ y_2 \\ y_3 \end{bmatrix}

系数矩阵就可以看作库普曼算子,这个算子将二维非线性的动力系统通过线性变换,转化为三维线性系统 

3、Koopman Operator理论

在处理实际问题时,我们通常考虑离散的动力学系统,即:

x_{t+1}=F(x_t)

其中,x_t\in \mathcal{M}为系统在𝑡时刻的状态,M为系统的状态空间。通过将状态从时间𝑡映射到时间𝑡+ 1来更新动态规则。在大多数情况下,它通常是非线性和未知的。而且,x_t\in M是有限维的,但也可以是高维的。

设G为状态空间M的标量函数构成的无限维空间,满足𝑔:M→R,则我们定义动力系统的Koopman算子\mathcal{K}为:

\mathcal{K}g=g \circ F

式中,\mathcal{K}: G→G,◦是两个函数的组合(𝑔与组成)。因此,我们得到如下等式:

g(x_{t+1})=g(F(x_t))=g\circ F(x_t)=\mathcal{K}g(x_t)

因此通过库普曼算子\mathcal{K},完成了从低维度到高维度的转化。

由于\mathcal{K}时一个参数矩阵,因此可以对其特征分解

\mathcal{K}=\Gamma K\Gamma ^{-1}

其中𝐾为𝐷×𝐷。注意𝐾是Koopman框架的有限维近似,与\mathcal{K}不同,\mathcal{K}是一个无限维算子。

定义\Phi =\Gamma ^{-1}g,称之为库普曼嵌入,可以得到最终的式子:

\Phi(x_{t+1})=K\Phi(x_t) \\ \Rightarrow x_{t+1}=\Phi ^{-1}(K\Phi(x_t))

因此若能够得到库普曼嵌入\Phi和库普曼算子K,就可以完成对动力学系统维度的升维。也可以用其来重构信号

以上只是一点我个人的理解,如有错误之处,烦请指正~


都看到这里了,给个小心心♥呗~

We consider the application of Koopman theory to nonlinear partial differential equations. We demonstrate that the observables chosen for constructing the Koopman operator are critical for en- abling an accurate approximation to the nonlinear dynamics. If such observables can be found, then the dynamic mode decomposition (DMD) algorithm can be enacted to compute a finite-dimensional approximation of the Koopman operator, including its eigenfunctions, eigenvalues and Koopman modes. We demonstrate simple rules of thumb for selecting a parsimonious set of observables that can greatly improve the approximation of the Koopman operator. Further, we show that the clear goal in selecting observables is to place the DMD eigenvalues on the imaginary axis, thus giving an objective function for observable selection. Judiciously chosen observables lead to physically interpretable spatio-temporal features of the complex system under consideration and provide a connection to manifold learning methods. Our method provides a valuable intermediate, yet inter- pretable, approximation to the Koopman operator that lies between the DMD method and the com- putationally intensive extended DMD (EDMD). We demonstrate the impact of observable selection, including kernel methods, and construction of the Koopman operator on several canonical, nonlinear PDEs: Burgers’ equation, the nonlinear Schrödinger equation, the cubic-quintic Ginzburg-Landau equation and a reaction-diffusion system. These examples serve to highlight the most pressing and critical challenge of Koopman theory: a principled way to select appropriate observables
Koopman算子是一种在动力系统中用于描述非线性系统演化的数学工具。它是由荷兰数学家Bernard O. Koopman在1931年提出的。Koopman算子的应用在动力系统、控制理论和量子力学等领域有着重要的意义。 Koopman算子可以将系统的非线性动力学转化为线性算子的动力学。它的核心思想是将系统的状态转化为无限维空间上的函数,这些函数被称为动力系统的特征函数。通过Koopman算子作用在特征函数上,可以实现非线性系统演化的线性化描述。 使用Koopman算子可以将非线性动力系统的行为分析转化为对线性算子的特征值和特征函数的研究。这样,我们可以通过研究特征函数的性质来理解系统的稳定性、周期性和吸引子等重要性质。此外,Koopman算子还可以用于模型推断、最优控制和数据分析等领域。 Koopman算子的研究也涉及到数据驱动的动力学建模。通过观测系统的状态变量,可以估计Koopman算子的特征函数以及与之相关的动力学特征。这种数据驱动的方法可以应用于复杂系统的模型预测、异常检测和控制设计等问题,为实际应用提供了一种新的思路。 总之,Koopman算子在动力系统理论和应用中具有重要的地位。它通过将非线性系统转化为线性算子的形式,为我们理解和控制复杂系统的行为提供了有力的工具。在未来的研究中,我们可以期待Koopman算子在更多领域的应用和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值