使用onnxruntime对onnx模型进行推理

代码如下:

import onnxruntime
import numpy as np

device_name = 'cpu' # or 'cpu'

if device_name == 'cpu':
    providers = ['CPUExecutionProvider']
elif device_name == 'cuda:0':
    providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
# Create inference session
onnx_model = onnxruntime.InferenceSession('./model/resnet.onnx', providers=providers)

# Create the input(这里的输入对应的输入)
data = np.random.rand(1,3, 224, 224).astype(np.float32)
data2 = input_img.asnumpy().astype(np.float32)
# Inference
onnx_input = {onnx_model.get_inputs()[0].name: data2}
outputs = onnx_model.run(None, onnx_input)

print(outputs)

Onnxruntime是一个用于推理和训练的开源深度学习库,它支持多种硬件平台和编程语言,包括C++。要在C++中使用Onnxruntime进行半精度推理,你需要按照以下步骤进行操作: 1. 首先,确保你已经安装了Onnxruntime库。你可以从Onnxruntime的官方GitHub页面下载并编译源代码,或者使用预编译的二进制文件。 2. 在你的C++项目中,包含Onnxruntime的头文件和库文件。你可以在编译选项中添加Onnxruntime的头文件路径和库文件路径,或者将它们复制到你的项目目录中。 3. 加载和初始化模型。在C++中,你可以使用onnxruntime::InferenceSession类来加载和运行模型使用onnxruntime::SessionOptions类可以设置推理选项,包括精度设置。 4. 设置输入数据。使用onnxruntime::RunOptions类可以设置运行选项,包括精度设置。使用onnxruntime::Value类可以创建和设置输入数据。 5. 执行推理。调用onnxruntime::InferenceSession的Run函数来执行推理。在Run函数中,你可以指定输入和输出张量的名称,以及精度设置。 6. 获取输出结果。使用onnxruntime::Value类可以获取输出数据。 7. 清理资源。在推理完成后,记得释放所有分配的资源。 需要注意的是,在进行半精度推理时,你需要确保模型已经经过了半精度训练,并且Onnxruntime版本支持使用半精度进行推理。你可以查阅Onnxruntime的官方文档,了解更多关于在C++中使用Onnxruntime进行推理的详细信息和示例代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值