基于人工神经网络的MATLAB手写数字识别系统

文章介绍了使用MATLAB构建的一个手写数字识别系统,通过MouseDraw函数创建GUI,用户可以手写数字并选择字号和颜色。系统包含训练和识别功能,通过BP神经网络进行学习,用户可以调整训练精度和学习速率。
摘要由CSDN通过智能技术生成

基于人工神经网络的MATLAB手写数字识别系统

  • 函数MouseDraw实现手写识别系统GUI界面的建立和鼠标手写的实现。(使用时保存为MouseDraw.m)

function MouseDraw(action)

% MouseDraw 本例展示如何以Handle Graphics来设定滑鼠事件

% (MouseDraw Events)的反应指令(Callbacks)

% 本程序在鼠标移动非常快时,不会造成画“断线”

% global不能传矩阵

global InitialX InitialY FigHandle hb2 hb3 hb4 count hb5 hb6 hb7

count='E:\im.jpg';

imSize = 50;

if nargin == 0, action = 'start';

end

switch(action)

%%开启图形视窗

case 'start',

FigHandle = figure('WindowButtonDownFcn','MouseDraw down','DeleteFcn','save bpnet');

axis([1 imSize 1 imSize]); % 设定图轴范围%

set(gca,'Position',[.25 .20 .7 .7]);

axis off;

grid off;

box on; % 将图轴加上图框

title('手写体输入窗');

try evalin('base','load bpnet')

catch

    evalin('base','bpgdtrain');

end

% % fprintf('start');

%%设定滑鼠按钮被按下时的反应指令为「MouseDraw down」

% set(gcf, 'WindowButtonDownFcn', 'MouseDraw down');  

hb1 = uicontrol('Parent', FigHandle, 'Units', 'Normalized', ...

    'Position', [.3 .01 .13 .07], 'String', '保存', ...

    'Callback',['exa=rgb2gray(frame2im(getframe(gca)));','imwrite(exa,''E:\im.jpg'')']);

hb2=uicontrol('Parent',FigHandle,'Style','popupmenu','Position',[50 50 50 30],...

    'String', {'26','24', '22', '20', '18', '16','14','12','10'});

hb3=uicontrol('Parent', FigHandle,'Style','text',...

'Position',[10 90 90 30],'String',[ 'CurrentX() ','CurrentY()']);

hb4=uicontrol('Parent',FigHandle,'Style','popupmenu','Position',[50 20 50 30],...

    'String',{'Red','Blue','Black','Yellow','Green'});

uicontrol('Parent',FigHandle,'Position',[270 6 70 30],'String','训练','Callback',...

    ['exa=rgb2gray(frame2im(getframe(gca)));','sample=reshape(recgnition(exa),25,1);','clc;',...

    't=inputdlg(''数字类别'',''样品训练'');','t=str2num(t{1,1})/10;',...

    'bpnet.trainParam.lr=str2num(get(hb6,''String''));','bpnet.trainParam.goal=str2num(get(hb7,''String''));',...

    '[bpnet]=train(bpnet,sample,t);','save bpnet']);

uicontrol('Parent',FigHandle,'Position',[360 6 70 30],'String','识别','Callback',...

    ['exa=rgb2gray(frame2im(getframe(gca)));','sample=reshape(recgnition(exa),25,1);',...

    'record=round(sim(bpnet,sample)*10);','clc;','set(hb5,''String'',num2str(record),''fontSize'',48);']);

uicontrol('Parent',FigHandle,'Style','text','Position',[10 60 30 20],'String','字号');

uicontrol('Parent',FigHandle,'Style','text','Position',[10 30 30 20],'String','颜色');

hb5=uicontrol('Parent',FigHandle,'Style','text','Position',[10 150 90 90]);

uicontrol('Parent',FigHandle,'Style','text','Position',[5 260 50 20],'String','学习速率');

hb6=uicontrol('Parent',FigHandle,'Style','Edit','Position',[60 260 30 20],'String','0.01');

uicontrol('Parent',FigHandle,'Style','text','Position',[5 290 50 20],'String','训练精度');

hb7=uicontrol('Parent',FigHandle,'Style','Edit','Position',[60 290 30 20],'String','0.005');

uicontrol('Parent',FigHandle,'Style','pushbutton','Position',[450 6 70 30],'String','清除','Callback','cla');

%将函数变量导入到工作空间;

assignin('base','hb5',hb5);

assignin('base','hb6',hb6);

assignin('base','hb7',hb7);

%%%%%%%%%%%%%%%%%%%%%%%%%%%

dlmwrite('IXT.txt', -10, 'delimiter', '\t', 'precision', 6);

dlmwrite('IYT.txt', -10, 'delimiter', '\t', 'precision', 6); %%滑鼠按钮被按下时的反应指令

case 'down',

    if strcmp(get(FigHandle, 'SelectionType'), 'normal') %如果是左键

        set(FigHandle,'pointer','hand');  

        CurPiont = get(gca, 'CurrentPoint');

        InitialX = CurPiont(1,1);

        InitialY = CurPiont(1,2);

        dlmwrite('IXT.txt', InitialX, '-append', 'delimiter', '\t', 'precision', 6);

        dlmwrite('IYT.txt', InitialY, '-append', 'delimiter', '\t', 'precision', 6);

% 列印「MouseDraw down!」讯息

% % fprintf('MouseDraw down!\n');

% 设定滑鼠移动时的反应指令为「MouseDraw move」

        set(gcf, 'WindowButtonMotionFcn', 'MouseDraw move');

        set(gcf, 'WindowButtonUpFcn', 'MouseDraw up');

    elseif strcmp(get(FigHandle, 'SelectionType'), 'alt') % 如果是右键

        set(FigHandle, 'Pointer', 'arrow');

        set( FigHandle, 'WindowButtonMotionFcn', '')

        set(FigHandle, 'WindowButtonUpFcn', '')

        fprintf('MouseDraw right button down!\n');

        ImageX = importdata('IXT.txt');

        ImageY = importdata('IYT.txt');

        InputImage = ones(imSize);

        roundX = round(ImageX);

        roundY = round(ImageY);

        for k = 1:size(ImageX,1)

            if 0<roundX(k) && roundX(k)<imSize && 0<roundY(k) && roundY(k)<imSize

                InputImage(roundX(k)-1:roundX(k)+2, roundY(k)-1:roundY(k)+2) = 0;

            end

        end

        InputImage = imrotate(InputImage,90); % 图像旋转90

        figure(2);

        imshow(InputImage);

    end

    %%滑鼠移动时的反应指令

    case 'move',

        CurPiont = get(gca, 'CurrentPoint');

        X = CurPiont(1,1);

        Y = CurPiont(1,2);

        set(hb3,'String',['CurrentX(',num2str(X),')','CurrentY(',num2str(Y),')']);

        % 当鼠标移动较快时,不会出现离散点。

        % 利用y=kx+b直线方程实现。

        x_gap = 0.1;

        % 定义x方向增量

        y_gap = 0.1;

        % 定义y方向增量

        if X > InitialX

            step_x = x_gap;

        else

            step_x = -x_gap;

        end

        if Y > InitialY

            step_y = y_gap;

        else

            step_y = -y_gap;

        end

        % 定义x,y的变化范围和步长

        if abs(X-InitialX) < 0.01 % 线平行于y轴,即斜率不存在时

            iy = InitialY:step_y:Y;

            ix = X.*ones(1,size(iy,2));

        else

            ix = InitialX:step_x:X ;

            % 定义x的变化范围和步长 % 当斜率存在,即k = (Y-InitialY)/(X-InitialX) ~= 0

            iy = (Y-InitialY)/(X-InitialX).*(ix-InitialX)+InitialY;  

        end

        ImageX = [ix, X];  

        ImageY = cat(2, iy, Y);

        popup_index1=26-(get(hb2,'Value')-1)*2;

        popup_index2=get(hb4,'Value');

        switch(popup_index2)

            case 1

                line(ImageX,ImageY, 'marker', '.', 'markerSize',popup_index1, ... 

                'LineStyle', '-', 'LineWidth', 4, 'Color', 'Red');

            case 2

                line(ImageX,ImageY, 'marker', '.', 'markerSize',popup_index1, ... 

                'LineStyle', '-', 'LineWidth', 4, 'Color', 'Blue');

            case 3

                line(ImageX,ImageY, 'marker', '.', 'markerSize',popup_index1, ... 

                'LineStyle', '-', 'LineWidth', 4, 'Color', 'Black');

            case 4

                line(ImageX,ImageY, 'marker', '.', 'markerSize',popup_index1, ... 

                'LineStyle', '-', 'LineWidth', 4, 'Color', 'Yellow');

            case 5

                line(ImageX,ImageY, 'marker', '.', 'markerSize',popup_index1, ... 

                'LineStyle', '-', 'LineWidth', 4, 'Color', 'Green');

        end

        dlmwrite('IXT.txt', ImageX, '-append', 'delimiter', '\t', 'precision', 6);

        dlmwrite('IYT.txt', ImageY, '-append', 'delimiter', '\t', 'precision', 6);

        InitialX = X; %记住当前点坐标

        InitialY = Y; %记住当前点坐标

        % 列印「MouseDraw is moving!」及滑鼠现在位置

        % fprintf('MouseDraw is moving! Current location = (%g, %g)\n', ...

        % CurPiont(1,1), CurPiont(1,2));

        % % fprintf('MouseDraw move!\n');

        % 设定滑鼠按钮被释放时的反应指令为「MouseDraw up」

        set(gcf, 'WindowButtonUpFcn', 'MouseDraw up');

        %%滑鼠按钮被释放时的反应指令

    case 'up',

        % 清除滑鼠移动时的反应指令

        set(gcf, 'WindowButtonMotionFcn', '');

        % 清除滑鼠按钮被释放时的反应指令

        set(gcf, 'WindowButtonUpFcn', '');

        % 列印「MouseDraw up!」

        % % fprintf('MouseDraw up!\n');

end

end

  • 实现手写数字图像特征的提取:(存为recgnition.m

function sample=recgnition(exa)

[i,j]=find(exa~=204);

imin=min(i);

imax=max(i);

jmin=min(j);

jmax=max(j);

a=exa(imin:imax,jmin:jmax);

M=imax-imin+1;

N=jmax-jmin+1;

for m=1:5

    for n=1:5

    exa_c{m,n}=a(1+(m-1)*M/5:m*M/5,1+(n-1)*N/5:n*N/5);

    sample(1,(m-1)*5+n)=size(find(exa_c{m,n}~=204),1)/(M*N/25);

    %subplot(5,5,(m-1)*5+n),subimage(exa_c{m,n});

    end

end 

  • 建立bp神经网络。(可修改所建立bp神经网络参数,也可建立其他类型神经网络)。

x=ones(25,2);

x(:,1)=0;

bpnet=newff(x,[50,1],{'logsig','logsig'},'traingd');

bpnet.trainParam.show=5;%显示训练迭代过程(每隔5次训练,显示一次训练进程)

bpnet.trainParam.lr=0.01;%学习速率

bpnet.trainParam.epochs=2000;%最大训练次数

bpnet.trainParam.goal=0.005;%训练要求精度(0.005)

此段命令应存为bpgdtrain.m文件。

以上函数以及m文件须保存以后才可调用。

神经网络要经过一定数量的训练才能达到较高的识别精度。

使用时先运行MouseDraw函数,出现下图界面,

界面介绍:

保存:可将手写数字图像保存为im.jpg文件。

训练:用于有导师训练神经网络,用户使用鼠标写好数字,点击训练,弹出输入框框,输入相应正确数字。

识别:对界面上的手写数字进行识别,结果显示在左边白色方框。

清除:可清除界面上数字,重新书写。

字号、颜色选择下拉框可选择手写数字字号与颜色。

控制训练精度和学习速率。具体参照bp神经网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值