应力张量不变量和偏应力张量不变量的张量表达不一致的原因

        前提:张量采用指标记法;在笛卡尔坐标系中,指标不分上下;指标的字母可以替换。


1. 应力张量不变量:I_{1}I_{2}I_{3}

        定义三个由应力张量\sigma_{ij}构成的不变量P_{1}P_{2}P_{3},其张量表达及在主轴坐标系中所对应的值如下:

P_{1}=\sigma_{ii}=\sigma_{1}+\sigma_{2}+\sigma_{3}

P_{2}=\sigma_{ij}\sigma_{ji}=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}

P_{3}=\sigma_{ij}\sigma_{jk}\sigma_{ki}=\sigma_{1}^{3}+\sigma_{2}^{3}+\sigma_{3}^{3}

        主应力的特征方程如下:

\left | \sigma_{ij}-\sigma\delta_{ij} \right |=0

        化简后,得:

\sigma^{3}-I_1\sigma^{2}+I_2\sigma-I_3=0

        由三次方程根的特性可以证明,应力张量不变量I_{1}I_{2}I_{3}和主应力有如下关系:

I_1=\sigma_1+\sigma_2+\sigma_3

I_2=\sigma_1\sigma_2+\sigma_2\sigma_3+\sigma_3\sigma_1

I_3=\sigma_1\sigma_2\sigma_3

式中,\sigma_1\sigma_2\sigma_3是特征方程的三个根,即三个主应力。

        我们可以利用不变量P_{1}P_{2}P_{3}构造出I_{1}I_{2}I_{3},大家可以自己检验:

I_1=P_1

I_2=\frac{1}{2}(P_1^2-P_2)

I_3=\frac{1}{6}(P_1^3-3P_1P_2+2P_3)

        将P_{1}P_{2}P_{3}的张量记法代入,有:

I_1=\sigma_{ii}

I_2=\frac{1}{2}[(\sigma_{ii})^2-\sigma_{jk}\sigma_{kj}]

I_3=\frac{1}{6}[(\sigma_{ii})^3-3\sigma_{jj}\sigma_{kl}\sigma_{lk}+2\sigma_{rs}\sigma_{st}\sigma_{tr}]

        注意:上面的张量表达中的指标相对P_{1}P_{2}P_{3}有一定变化,这是由指标约定所引起的,即:一个表达式中,同一指标字母出现的次数不应大于两次。而且根据哑指标约定,哑指标的字母可以任意更换,只要该指标字母不与式子中的其他指标字母重复即可。

        以上便是应力张量不变量的推导过程。


2. 偏应力张量不变量:J_{1}J_{2}J_{3}

        根据定义,偏应力张量s_{ij}与应力张量\sigma_{ij}存在如下关系:

s_{ij}=\sigma_{ij}-p\delta_{ij}

p=\frac{1}{3}\sigma_{ii}=\frac{1}{3}I_1

式中,p为球(静水)应力;\delta_{ij}为Kronecker符号。   

        根据主应力\sigma的定义,有:

\sigma_{ij}n_j=\sigma n_i

式中,n_i为单位法向向量的分量。

        代入s_{ij}=\sigma_{ij}-p\delta_{ij},有:

(s_{ij}+p\delta_{ij})n_j=\sigma n_i

s_{ij}n_j=\sigma n_i-p\delta_{ij}n_j

s_{ij}n_j=\sigma n_i-pn_i

s_{ij}n_j=(\sigma-p)n_i

        定义s=\sigma-p,需要注意,p是一定值,\sigma是特征方程的未知数,故s也是未知数。代入后得:

s_{ij}n_j=sn_i

        上式由主应力的定义式\sigma_{ij}n_j=\sigma n_i变形得到,因此,他们具有相同的根,一般有3个根:n_i^{(1)}n_i^{(2)}n_i^{(3)},分别代表3个主应力所在平面的法向向量方向,即主应力方向。

        上式也说明了,偏应力张量与原应力张量的主方向是一致的。即,在应力张量的3个方向上同时减去一个常数正应力不会改变其主方向。

        由上式可得,偏应力张量的主应力s的特征方程:

\left |s_{ij}-s\delta_{ij} \right |=0

        化简后,得:

s^{3}-J_1s^{2}+J_2s-J_3=0

式中,J_{1}J_{2}J_{3}为偏应力张量的3个不变量。

        等等,是不是觉得很熟悉?没错,这不跟主应力的特征方程一个样吗。于是我们只需要把主应力结果中的\sigma全部换成s,把I换成J即可。

        于是,定义三个由偏应力张量s_{ij}构成的不变量L_{1}L_{2}L_{3},其张量表达及在主轴坐标系中所对应的值如下:

L_{1}=s_{ii}=s_{1}+s_{2}+s_{3}

L_{2}=s_{ij}s_{ji}=s_{1}^{2}+s_{2}^{2}+s_{3}^{2}

L_{3}=s_{ij}s_{jk}s_{ki}=s_{1}^{3}+s_{2}^{3}+s_{3}^{3}

        同样,我们可以利用不变量L_{1}L_{2}L_{3}构造出J_{1}J_{2}J_{3}

J_1=L_1

J_2=\frac{1}{2}(L_1^2-L_2)

J_3=\frac{1}{6}(L_1^3-3L_1L_2+2L_3)

        将L_{1}L_{2}L_{3}的张量记法带入,有:

J_1=s_{ii}

J_2=\frac{1}{2}[(s_{ii})^2-s_{jk}s_{kj}]

J_3=\frac{1}{6}[(s_{ii})^3-3s_{jj}s_{kl}s_{lk}+2s_{rs}s_{st}s_{tr}]

        等等,你这跟书上也不一样啊。想必,我们都会认为书上的应该是上述表达才对,这也是大家搜索这个问题的原因。可为什么书上的是很奇怪的表达呢?这是由于,

s_{ii}=\sigma_{ii}-p\delta_{ii}=\sigma_{ii}-3p=\sigma_{ii}-\sigma_{ii}=0

        将s_{ii}=0带入偏应力张量不变量的张量记法表达式中,得到如下表达:

J_1=0

J_2=-\frac{1}{2}s_{ij}s_{ji}

J_3=\frac{1}{3}s_{ij}s_{jk}s_{ki}

        这便是书上的形式。

        注意:有的书上会将特征方程写为下面的形式:

s^{3}-J_1s^{2}-J_2s-J_3=0

        即,将“+”号变成了“-”号,此时的偏应力张量不变量J_2便没有“-”号,即:

J_1=0

J_2=\frac{1}{2}s_{ij}s_{ji}

J_3=\frac{1}{3}s_{ij}s_{jk}s_{ki}


3. 总结:

        应力张量不变量和偏应力张量不变量的张量表达不一致是由s_{ii}=0所引起的

欢迎指正~

  • 20
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值