梯度的旋度等于0、旋度的散度等于0的张量证明

本文详细介绍了在笛卡尔坐标系中,梯度、散度和旋度的概念,以及它们的数学表示,并证明了梯度的旋度和旋度的散度都等于0,关键在于利用了置换张量的性质和求和约定。
摘要由CSDN通过智能技术生成

前提:在笛卡尔坐标系中,指标不分上下;指标的字母可以替换;使用手写记法表示向量。

定义:

        (1)梯度算子\vec{\bigtriangledown}作用于标量场\phi,称为\phi​​​​​​​的梯度,读作grad\phi,表示如下:

\vec{\bigtriangledown}\phi =\frac{\partial \phi}{\partial x_1}\vec{e_1}+\frac{\partial \phi}{\partial x_2}\vec{e_2}+\frac{\partial\phi}{\partial x_3}\vec{e_3}=\frac{\partial\phi}{\partial x_i}\vec{e_i}

        (2)\vec{v}的散度是一个标量,表示为div\vec{v},描述如下:

div\vec{v}=\vec{\bigtriangledown}\cdot \vec{v}=\frac{\partial v_1}{\partial x_1}+\frac{\partial v_2}{\partial x_2}+\frac{\partial v_3}{\partial x_3}=\frac{\partial v_i}{\partial x_i}

        (3)\vec{v}的旋度由\vec{\bigtriangledown}\vec{v}的叉积获得,表示为curl\vec{v},描述如下:

curl\vec{v}=\vec{\bigtriangledown}\times\vec{v}=\varepsilon_{ijk} \frac{\partial v_k}{\partial x_j}\vec{e_{i}}

        式中,\varepsilon_{ijk}为置换张量,也称交错张量。


证明梯度的旋度等于0:

        \phi的梯度的旋度可以表示为:

curlgrad\phi =\vec{\bigtriangledown }\times \left ( \vec{\bigtriangledown}\phi \right )

        其中:

\vec{\bigtriangledown}=\frac{\partial}{\partial x_i}\vec{e_i}

        使用指标表示:

curlgrad\phi =\varepsilon _{ijk}\frac{\partial}{\partial x_j}\frac{\partial\phi}{\partial x_k}\vec{e_i}=\varepsilon _{ijk}\frac{\partial^{2}\phi}{\partial x_k\partial x_j}\vec{e_i}

        又,

\frac{\partial^{2}\phi}{\partial x_k\partial x_j}=\frac{\partial^{2}\phi}{\partial x_j\partial x_k}

        根据置换张量的指标每调换一次其值变为相反数的性质,有:

\varepsilon _{ijk}=-\varepsilon _{ikj}

        而此时,根据求和约定,\varepsilon _{ijk}\frac{\partial^{2}\phi}{\partial x_k\partial x_j}\vec{e_i}有6项。结合上述性质,可知两两互为相反数。

        因此,

\varepsilon _{ijk}\frac{\partial^{2}\phi}{\partial x_k\partial x_j}\vec{e_i}=\vec{0}

        故,

curlgrade\phi =\vec{\bigtriangledown }\times \left ( \vec{\bigtriangledown}\phi \right )=\varepsilon _{ijk}\frac{\partial^{2}\phi}{\partial x_k\partial x_j}\vec{e_i}=\vec{0}

        证毕!


证明旋度的散度等于0:

        \vec{v}的旋度的散度可以表示为:

divcurl\vec{v}=\vec{\bigtriangledown}\cdot \left (\vec{\bigtriangledown}\times\vec{v} \right )

        其中:

\vec{\bigtriangledown}=\frac{\partial}{\partial x_i}\vec{e_i}

\vec{v}=v_{i}\vec{e_i}

\vec{\bigtriangledown}\times\vec{v}=\varepsilon _{ijk}\frac{\partial v_{k}}{\partial x_j}\vec{e_i}

        故,

divcurl\vec{v}=\vec{\bigtriangledown}\cdot \left (\vec{\bigtriangledown}\times\vec{v} \right )=\frac{\partial}{\partial x_r}\vec{e_r}\cdot \varepsilon _{ijk}\frac{\partial v_{k}}{\partial x_j}\vec{e_i}=\delta _{ri}\varepsilon _{ijk}\frac{\partial^{2} v_{k}}{\partial x_j{\partial x_r}}

        式中,\delta _{ri}为Kronecker符号;当且仅当r=i时,\delta _{ri}\neq 0

        利用该性质,对上式进行简化:

divcurl\vec{v}=\vec{\bigtriangledown}\cdot \left (\vec{\bigtriangledown}\times\vec{v} \right )=\varepsilon _{ijk}\frac{\partial^{2} v_{k}}{\partial x_j{\partial x_i}}

        又,

\frac{\partial^{2} v_{k}}{\partial x_j{\partial x_i}}=\frac{\partial^{2} v_{k}}{\partial x_i{\partial x_j}}

        根据置换张量的指标每调换一次其值变为相反数的性质,有:

\varepsilon _{ijk}=-\varepsilon _{jik}

        而此时,根据求和约定,\varepsilon _{ijk}\frac{\partial^{2} v_{k}}{\partial x_j{\partial x_i}}有6项。结合上述性质,可知两两互为相反数。

        因此,

\varepsilon _{ijk}\frac{\partial^{2} v_{k}}{\partial x_j{\partial x_i}}=0

        故,

divcurl\vec{v}=\vec{\bigtriangledown}\cdot \left (\vec{\bigtriangledown}\times\vec{v} \right )=\varepsilon _{ijk}\frac{\partial^{2} v_{k}}{\partial x_j{\partial x_i}}=0

        证毕!

  • 12
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值