证明:一个应力状态为平面应力状态的充分必要条件是一个主应力为0(即应力张量的行列式为0)

本文探讨了张量在笛卡尔坐标系中的性质,通过投影定理和应力状态的特性,证明了平面应力状态下主应力和平面的关系。文章详细阐述了充分性和必要性的证明过程,说明了主应力为0时的应力矢量特征和应力状态的确定性。
摘要由CSDN通过智能技术生成

 前提:张量采用指标记法;在笛卡尔坐标系中,指标不分上下;指标的字母可以替换。


1.补充知识

        投影定理:考虑过任意点的两个单元面积,其单位法线为\textit{​{\textbf{n}}}^{(1)}\textit{​{\textbf{n}}}^{(2)},对应的应力矢量分别为\overset{n}{\textit{\textbf{T}}}^{(1)}\overset{n}{\textit{\textbf{T}}}^{(2)}。可知:\overset{n}{\textit{\textbf{T}}}^{(1)}\textit{​{\textbf{n}}}^{(2)}方向的投影等于\overset{n}{\textit{\textbf{T}}}^{(2)}\textit{​{\textbf{n}}}^{(1)}方向的投影,表达如下。

\overset{n}{\textit{\textbf{T}}}^{(1)}\cdot \textit{\textbf{n}}^{(2)}=\overset{n}{\textit{\textbf{T}}}^{(2)}\cdot \textit{\textbf{n}}^{(1)}

        证明:

\overset{n}{\textit{\textbf{T}}}^{(1)}\cdot \textit{\textbf{n}}^{(2)}=\sigma_{ij}n_j^{(1)}n_i^{(2)}

        由于应力张量\sigma_{ij}是对称的,即\sigma_{ij}=\sigma_{ji},于是:

\overset{n}{\textit{\textbf{T}}}^{(1)}\cdot \textit{\textbf{n}}^{(2)}=\sigma_{ij}n_j^{(1)}n_i^{(2)}=\sigma_{ji}n_j^{(1)}n_i^{(2)}

        替换哑指标后,有:

\overset{n}{\textit{\textbf{T}}}^{(1)}\cdot \textit{\textbf{n}}^{(2)}=\sigma_{ij}n_j^{(1)}n_i^{(2)}=\sigma_{ji}n_j^{(1)}n_i^{(2)}=\sigma_{ij}n_j^{(2)}n_i^{(1)}=\overset{n}{\textit{\textbf{T}}}^{(2)}\cdot \textit{\textbf{n}}^{(1)}

        证毕!


2.充分性的证明

        已知一个应力状态为平面应力状态,则其必定存在一个应力矢量\overset{n}{\textit{\textbf{T}}}=\textit{\textbf{0}}的面元。若一个面元上\overset{n}{\textit{\textbf{T}}}=\textit{\textbf{0}},则其正应力\sigma_n和剪应力S_n分量必为0。由于剪应力S_n为0的平面是主应力平面,故该面必为一主应力平面。

        不妨设该平面为第一主应力平面,即:

\left | \overset{n}{\textit{\textbf{T}}} \right |=\sigma_1=0

        此时,在主应力坐标系中,应力张量\sigma_{ij}表达如下:

\sigma_{ij}=\begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \sigma_3 \end{bmatrix}

        又\sigma_1=0,于是:

\left | \sigma_{ij} \right |=\sigma_1\sigma_2\sigma_3=0

        而应力张量的第三不变量I_3与应力张量\sigma_{ij}的行列式之间存在如下关系:

I_3=\left | \sigma_{ij} \right |=\sigma_1\sigma_2\sigma_3

        于是,

I_3=\left | \sigma_{ij} \right |=\sigma_1\sigma_2\sigma_3=0

        又,应力张量的不变量不会随着坐标系的改变而变化,故在任意坐标系中,必有:

I_3=\left | \sigma_{ij} \right |=0

        充分性得证!


3.必要性的证明

        已知,一个主应力为0(即,\left | \sigma_{ij} \right |=0)。又任意主应力平面上的剪应力S_n为0。主应力平面上的主应力即为正应力,即该主应力平面上的正应力\sigma_n为0。又任意平面上的应力矢量的大小与正应力\sigma_n和剪应力S_n分量之间存在如下关系:

\left ( \left | \overset{n}{\textit{\textbf{T}}} \right | \right )^2 =\sigma_n^2+S_n^2

        于是,此时:

\left ( \left | \overset{n}{\textit{\textbf{T}}} \right | \right )^2 =\sigma_n^2+S_n^2=0

        设\overset{n}{\textit{\textbf{T}}}\overset{n}{\textit{\textbf{T}}}^{(1)}(此时\overset{n}{\textit{\textbf{T}}}^{(1)}=\textit{\textbf{0}},结合投影定理可知:在任意单位法线为\textit{​{\textbf{n}}}^{(2)}的平面上,必有如下关系。

\overset{n}{\textit{\textbf{T}}}^{(2)}\cdot \textit{\textbf{n}}^{(1)}=\overset{n}{\textit{\textbf{T}}}^{(1)}\cdot \textit{\textbf{n}}^{(2)}=\textit{\textbf{0}}\cdot \textit{\textbf{n}}^{(2)}=\textit{\textbf{0}}

        于是\textit{​{\textbf{n}}}^{(2)}平面上的应力矢量\overset{n}{\textit{\textbf{T}}}^{(2)}必定垂直于\textit{​{\textbf{n}}}^{(1)},即平行于\textit{​{\textbf{n}}}^{(1)}所在的平面。由于\textit{​{\textbf{n}}}^{(2)}是任意的,故任意面元上的应力矢量\overset{n}{\textit{\textbf{T}}}^{(2)}都平行于\textit{​{\textbf{n}}}^{(1)}所在的平面,则该点处于平面应力状态。

        必要性得证!

  • 8
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值