证明:一个应力状态为平面应力状态的充分必要条件是一个主应力为0(即应力张量的行列式为0)

本文探讨了张量在笛卡尔坐标系中的性质,通过投影定理和应力状态的特性,证明了平面应力状态下主应力和平面的关系。文章详细阐述了充分性和必要性的证明过程,说明了主应力为0时的应力矢量特征和应力状态的确定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 前提:张量采用指标记法;在笛卡尔坐标系中,指标不分上下;指标的字母可以替换。


1.补充知识

        投影定理:考虑过任意点的两个单元面积,其单位法线为\textit{​{\textbf{n}}}^{(1)}\textit{​{\textbf{n}}}^{(2)},对应的应力矢量分别为\overset{n}{\textit{\textbf{T}}}^{(1)}\overset{n}{\textit{\textbf{T}}}^{(2)}。可知:\overset{n}{\textit{\textbf{T}}}^{(1)}\textit{​{\textbf{n}}}^{(2)}方向的投影等于\overset{n}{\textit{\textbf{T}}}^{(2)}\textit{​{\textbf{n}}}^{(1)}方向的投影,表达如下。

\overset{n}{\textit{\textbf{T}}}^{(1)}\cdot \textit{\textbf{n}}^{(2)}=\overset{n}{\textit{\textbf{T}}}^{(2)}\cdot \textit{\textbf{n}}^{(1)}

        证明:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值