前面咱们讲的都是1维问题,下面咱们讲讲2维问题。实际上,所有的现实问题都是3维问题,可是在特定情况下,可以把它们简化为2维问题来分析。在弹性力学中,常见的有3类2维问题,即,平面应力、平面应变、轴对称问题。咱们讲下什么是平面应力和平面应变问题。
关于平面应力和平面应变更加详细的弹性力学推导,请参考:
https://wenku.baidu.com/view/c63e00c7aa00b52acfc7caf7.html
1 平面应力问题
对于一个薄板,即长度和宽度远远大于厚度的板,其边缘受平行于板面且不沿厚度方向变化的面力和体力,则可近似认为是平面应力问题。比如平板两端拉伸的问题,注意平板受弯曲的问题则不满足该条件,因其受力是垂直于板面的!
原本的6个应力
σ
x
\sigma_x
σx、
σ
y
\sigma_y
σy、
σ
z
\sigma_z
σz、
τ
x
y
=
τ
y
x
\tau_{xy}=\tau_{yx}
τxy=τyx、
τ
y
z
=
τ
z
y
\tau_{yz}=\tau_{zy}
τyz=τzy、
τ
z
x
=
τ
x
z
\tau_{zx}=\tau_{xz}
τzx=τxz,
平面应力状态下,z方向应力近似为0,即,对于上面的薄板受力状态而言,其上下表面是没有z方向的应力的!即
σ
z
=
0
\sigma_z=0
σz=0、
τ
z
y
=
0
\tau_{zy}=0
τzy=0、
τ
z
x
=
0
\tau_{zx}=0
τzx=0,
那么仅剩下
σ
x
\sigma_x
σx、
σ
y
\sigma_y
σy、
τ
x
y
\tau_{xy}
τxy三个应力,故而是平面应力状态!
2 平面应变问题
对于柱体,即长度远大于截面尺寸,柱面上承受平行于横截面且不沿长度方向变化的面力和体力,则可近似认为是平面应变问题。比如,水坝、厚壁圆筒、滚柱等问题。
由于z方向很长,其类似于周期边界,没有z方向的位移发生,所以z方向的应变
ϵ
z
=
0
\epsilon_z=0
ϵz=0、
γ
z
x
=
0
\gamma_{zx}=0
γzx=0、
γ
z
y
=
0
\gamma_{zy}=0
γzy=0。
如此,原本三维空间的6个应变量
ϵ
x
\epsilon_x
ϵx、
ϵ
y
\epsilon_y
ϵy、
ϵ
z
\epsilon_z
ϵz、
γ
x
y
=
γ
y
x
\gamma_{xy}=\gamma_{yx}
γxy=γyx、
γ
y
z
=
γ
z
y
\gamma_{yz}=\gamma_{zy}
γyz=γzy、
γ
z
x
=
γ
x
z
\gamma_{zx}=\gamma_{xz}
γzx=γxz仅剩下了xy平面上的3个量,即
ϵ
x
\epsilon_x
ϵx、
ϵ
y
\epsilon_y
ϵy、
γ
x
y
\gamma_{xy}
γxy,所以叫做平面应变问题。
3 平衡方程(应力方程)
{ ∂ σ x ∂ x + ∂ τ x y ∂ y + X = 0 ∂ τ y x ∂ x + ∂ σ y ∂ y + Y = 0 \left\{ \begin{aligned} \frac{\partial\sigma_x}{\partial x} + \frac{\partial\tau_{xy}}{\partial y}+X=0 \\ \frac{\partial\tau_{yx}}{\partial x} + \frac{\partial\sigma_y}{\partial y}+Y=0 \end{aligned} \right. ⎩⎪⎪⎨⎪⎪⎧∂x∂σx+∂y∂τxy+X=0∂x∂τyx+∂y∂σy+Y=0
4 几何方程(应变位移方程)
{ ϵ x = ∂ u ∂ x ϵ y = ∂ v ∂ y γ x y = ∂ u ∂ y + ∂ u ∂ x \left\{ \begin{aligned} \epsilon_x=\frac{\partial u}{\partial x} \\ \epsilon_y=\frac{\partial v}{\partial y} \\ \gamma_{xy}=\frac{\partial u}{\partial y}+\frac{\partial u}{\partial x} \end{aligned} \right. ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧ϵx=∂x∂uϵy=∂y∂vγxy=∂y∂u+∂x∂u
5 物理方程(应力应变关系)
(1)平面应力情况
σ
x
\sigma_x
σx、
σ
y
\sigma_y
σy、
τ
x
y
\tau_{xy}
τxy 与
ϵ
x
\epsilon_x
ϵx、
ϵ
y
\epsilon_y
ϵy、
γ
x
y
\gamma_{xy}
γxy、
ϵ
z
\epsilon_z
ϵz的关系。
注意z方向没有应力,但是有个应变
ϵ
z
\epsilon_z
ϵz!
{
ϵ
x
=
1
E
(
σ
x
−
μ
σ
y
)
ϵ
y
=
1
E
(
σ
y
−
μ
σ
x
)
γ
x
y
=
2
(
1
+
μ
)
E
τ
x
y
\left\{ \begin{aligned} \epsilon_x=\frac{1}{E}(\sigma_x-\mu\sigma_y) \\ \epsilon_y=\frac{1}{E}(\sigma_y-\mu\sigma_x) \\ \gamma_{xy}=\frac{2(1+\mu)}{E}\tau_{xy} \end{aligned} \right.
⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧ϵx=E1(σx−μσy)ϵy=E1(σy−μσx)γxy=E2(1+μ)τxy
ϵ
z
\epsilon_z
ϵz的求法
ϵ
z
=
μ
E
(
σ
x
+
σ
y
)
\epsilon_z=\frac{\mu}{E}(\sigma_x+\sigma_y)
ϵz=Eμ(σx+σy)
(2)平面应变情况
σ
x
\sigma_x
σx、
σ
y
\sigma_y
σy、
σ
z
\sigma_z
σz、
τ
x
y
\tau_{xy}
τxy 与
ϵ
x
\epsilon_x
ϵx、
ϵ
y
\epsilon_y
ϵy、
γ
x
y
\gamma_{xy}
γxy的关系。
注意z方向没有应变,但是有个应力
σ
z
\sigma_z
σz!
{
ϵ
x
=
1
−
μ
2
E
(
σ
x
−
μ
1
−
μ
σ
y
)
ϵ
y
=
1
−
μ
2
E
(
σ
y
−
μ
1
−
μ
σ
x
)
γ
x
y
=
2
(
1
+
μ
)
E
τ
x
y
\left\{ \begin{aligned} \epsilon_x=\frac{1-\mu^2}{E}(\sigma_x-\frac{\mu}{1-\mu}\sigma_y) \\ \epsilon_y=\frac{1-\mu^2}{E}(\sigma_y-\frac{\mu}{1-\mu}\sigma_x) \\ \gamma_{xy}=\frac{2(1+\mu)}{E}\tau_{xy} \end{aligned} \right.
⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧ϵx=E1−μ2(σx−1−μμσy)ϵy=E1−μ2(σy−1−μμσx)γxy=E2(1+μ)τxy
σ
z
\sigma_z
σz的求法
σ
z
=
μ
(
σ
x
+
σ
y
)
\sigma_z=\mu(\sigma_x+\sigma_y)
σz=μ(σx+σy)
不难发现,两者方程形式上是相同的,只是系数不同罢了!这也就是为什么它们放在一起讨论。
平衡方程2个 + 几何方程3个 + 物理方程3个 = 8个方程,未知量有8个,即
u
u
u、
v
v
v、
ϵ
x
\epsilon_x
ϵx、
ϵ
y
\epsilon_y
ϵy、
γ
x
y
\gamma_{xy}
γxy、
σ
x
\sigma_x
σx、
σ
y
\sigma_y
σy、
τ
x
y
\tau_{xy}
τxy,注意
σ
z
\sigma_z
σz和
ϵ
z
\epsilon_z
ϵz并不参加运算,其可由计算结果直接算出来。
那么方程组时封闭的,可解!
6 边界条件
受力边界条件
σ
i
j
n
j
=
T
i
\sigma_{ij}n_j=T_i
σijnj=Ti
位移边界条件
u
i
=
u
‾
i
u_i=\overline u_i
ui=ui
7 有限元方法
单元及其形函数(三角单元、矩形单元),刚度矩阵推导等,较为复杂,不要求本科生掌握,故不再写出,感兴趣的可参考相关书籍资料。
咱们只要知道要分析的问题属于平面应力还是平面应变问题就好了,因为在ANSYS中,他们是用一个单元表示的,需要在单元属性中去指明是平面应力还是平面应变问题。