CINTA作业六

1.设G是群,H是G的子群。任取 g 1 , g 2 ∈ G g_1,g_2\in G g1,g2G ,则 g 1 H = g 2 H g_1H=g_2H g1H=g2H 当且仅当 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H .

充分性:
g 1 H = g 2 H , 有 h 1 , h 2 ∈ H , 使 得 g 1 h 1 = g 2 h 2 g_1H=g_2H,有h_1,h_2\in H,使得g_1h_1=g_2h_2 g1H=g2H,h1,h2H,使g1h1=g2h2
左右两边同乘 g − 1 , h 2 − 1 g^{-1},h_2^{-1} g1,h21
g 1 − 1 g 1 h 1 h 2 − 1 = g 1 − 1 g 2 h 2 h 2 − 1 g_1^{-1}g_1h_1h_2^{-1}=g_1^{-1}g_2h_2h_2^{-1} g11g1h1h21=g11g2h2h21
e h 1 h 2 − 1 = g 1 − 1 g 2 e eh_1h_2^{-1}=g_1^{-1}g_2e eh1h21=g11g2e
因为群的封闭性
h 1 h 2 − 1 ∈ H h_1h_2^{-1}\in H h1h21H
所以
g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H

必要性:
g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H

h 1 = g 1 − 1 g 2 , h 2 = e ∈ H h_1=g_1^{-1}g_2,h2=e\in H h1=g11g2,h2=eH
g 1 h 1 = g 1 g 1 − 1 g 2 = e g 2 = g 2 h 2 g_1h_1=g_1g_1^{-1}g_2=eg_2=g_2h_2 g1h1=g1g11g2=eg2=g2h2
所以
g 1 H = g 2 H g_1H=g_2H g1H=g2H


3.如果 G G G 是群, H H H 是群 G G G 的子群,且 [ G : H ] = 2 [G : H] = 2 [G:H]=2,请证明对任意的 g ∈ G , g H = H g g ∈ G,gH = Hg gGgH=Hg

  • g ∈ H g\in H gH
    g H = H = H g gH=H=Hg gH=H=Hg
  • g ∉ H g\notin H g/H

[ G : H ] = 2 [G:H]=2 [G:H]=2
所 以 有 H ′ = G − H 所以有H'=G-H H=GH
又 g ∉ H , 故 g h ∉ H ′ , h g ∉ H 但 h g ∈ H ’ 又g \notin H,故gh \notin H',hg \notin H但hg \in H’ g/H,gh/H,hg/HhgH
故 g H = H ′ , H g = H ′ 故gH=H',Hg=H' gH=H,Hg=H
所 以 g H = H g 所以gH=Hg gH=Hg


4

因为H是G的真子群,且 ∃ g ∈ G , g ∉ H \exist g \in G,g\notin H gGg/H
∣ G ∣ ∣ H ∣ = [ G : H ] ≥ 2 \frac{|G|}{|H|}=[G:H]≥2 HG=[G:H]2
∣ H ∣ ≤ ∣ G ∣ 2 |H|≤\frac{|G|}{2} H2G


5

设G的一个真子群为H, ∃ g ∈ G 且 g ∉ H \exist g \in G且g\notin H gGg/H,由推论8.1有 o r d ( g ) ∣ p g ord(g)|pg ord(g)pg
∣ H ∣ = n , 由 拉 格 朗 日 定 理 得 : n ∣ p g |H|=n,由拉格朗日定理得:n|pg H=n,npg
g ∉ H , 故 n ≠ o r d ( g ) g\notin H,故n≠ord(g) g/H,n=ord(g)
令 g ∈ H ′ , ∣ H ′ ∣ = m , 则 m ∣ p g , 又 m ≠ n 令g\in H',|H'|=m,则m|pg,又m≠n gHH=m,mpg,m=n
所 以 m = p , n = q 或 m = q , n = p 所以m=p,n=q或m=q,n=p m=p,n=qm=q,n=p
故 G = H + H ′ 且 ∣ H ∣ 和 ∣ H ′ ∣ 为 素 数 故G=H+H'且|H|和|H'|为素数 G=H+HHH
由推论8.2得: H 和 H ′ 为 循 环 群 H和H'为循环群 HH


7

  1. 费马小定理
    G是以n为阶得有限群, 则 ∀ a ∈ G , 令 ∣ a ∣ = k , 由 推 论 8.1 可 知 k ∣ n 则\forall a \in G,令|a|=k,由推论8.1可知k|n aG,a=k8.1kn
    a k = e a^k=e ak=e,所以 a n = a m k = e m = e a^n=a^{mk}=e^m=e an=amk=em=e
  2. 欧拉定理
    G是以 ϕ ( n ) \phi(n) ϕ(n)为阶得有限群, 则 ∀ a ∈ G , 令 ∣ a ∣ = k , 由 推 论 8.1 可 知 k ∣ ϕ ( n ) 则\forall a \in G,令|a|=k,由推论8.1可知k|\phi(n) aG,a=k8.1kϕ(n)
    a k = e a^k=e ak=e,所以 a n = a m k = e m = e a^n=a^{mk}=e^m=e an=amk=em=e
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值