3.如果 H1 和 H2 是群 G 的正规子群,证明 H1H2 也是群 G 的正规子群
∀ g ∈ G , g H 1 = H 1 g , g H 2 = H 2 g \forall g \in G,gH_1=H_1g,gH_2=H_2g ∀g∈G,gH1=H1g,gH2=H2g
∀ h 1 ∈ H 1 , ∀ h 2 ∈ H 2 , 有 g h 1 = h 1 ′ g , g h 2 = h 2 ′ g \forall h_1 \in H_1,\forall h_2 \in H_2,有gh_1=h_1'g,gh_2=h_2'g ∀h1∈H1,∀h2∈H2,有gh1=h1′g,gh2=h2′g
g h 1 h 2 = h 1 ′ g h 2 = h 1 ′ h 2 ′ g ∈ H 1 H 2 g , 故 g H 1 H 2 ∈ H 1 H 2 g gh1h2 = h_1'gh_2 = h_1'h_2'g \in H_1H_2g,故gH_1H_2 \in H_1H_2g gh1h2=h1′gh2