一、数据集获取
1、在官网DREAMER: A Database for Emotion Recognition through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices进行申请,使用的是qq邮箱,申请很快,最晚一周也能申请到。
2、下载后有下面两个文件
3、然后可以阅读一遍DREAMER.pdf,用MATLAB打开DREAMER.mat。
MATLAB变量如图所示:
二、DREAMER.pdf翻译
DREAMER:一个通过无线低成本的现成的设备采集EEG和ECG信号(脑电图和心电图)进行情绪识别的数据集
摘要:我们展示DREAMER,一个记录了通过视听刺激来激发情绪的过程中产生的EEG和ECG信号的多模态数据集。记录了23名被试的信号以及被试在每一次刺激后对其情感状态的自我评估,即效价、唤醒度和支配度。所有的信号都使用便携式、可穿戴、无线、低成本和现成的设备进行捕获,这使得它有潜力允许可以在日常应用中使用情感计算方法。EEG的采集使用Emotiv EPOC无线脑电耳机,ECG使用Shimmer2心电传感器采集。
对所提出的数据集的效价、唤醒度和支配度的分类结果跟其他使用非便携式的、昂贵的的、医疗级设备获得的数据集是可比较的。
本文所提出的数据集是公开的可获得的,为了使研究者在情绪识别应用中实现对这些捕获设备的适宜性更完全的评价。
如果你使用了DREAMER数据集请引用:
S. Katsigiannis, N. Ramzan, “DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices,” IEEE Journal of Biomedical and Health Informatics, 2017. In press. doi: 10.1109/JBHI.2017.2688239
数据集概述
这个DREAMER数据集包含了一个实验的被试的评分和生理记录,23个志愿者看了由Gabert-Quillen等人挑选和评价的18个电影片段。EEG和ECG信号被记录,并且每个被试通过报告5个点量表上感觉到的唤醒,效价和支配度来对他们的情绪打分。对于更多的细节,可以看看引用文献2。
数据文件
DREAMER数据集包括了MATLAB格式的“DREAMER.mat”。加载这个文件在工作区中加载一个名字为“DREAMER”的变量。“DREAMER”变量的结构如下所示:
DREAMER =
struct with fields:
Data: {1×23 cell}
EEG_SamplingRate: 128
ECG_SamplingRate: 256
EEG_Electrodes: {'AF3' 'F7' 'F3' 'FC5' 'T7' 'P7' 'O1' 'O2' 'P8' 'T8' 'FC6' 'F4' 'F8' 'AF4'}
noOfSubjects: 23
noOfVideoSequences: 18
Disclaimer: 'While every care has been taken...'
Provider: 'University of the West of Scotland'
Version: '1.0.2'
Acknowledgement: 'The authors would like to thank...'
元素DREAMER.Data{i}包含第i个被试的数据并且结构如下:
struct with fields:
Age: 'X'
Gender: 'X' ('male' or 'female')
EEG: [1×1 struct]
ECG: [1×1 struct]
ScoreValence: [18×1 double]
ScoreArousal: [18×1 double]
ScoreDominance: [18×1 double]
ScoreValence, ScoreArousal 和ScoreDominance是向量,他们的第i个元素和被试对第i个电影片段就效价,唤醒度和支配度的评分相关。
EEG和ECG信号分别被存储在DREAMER.Data{i}.EEG和DREAMER.Data{i}.ECG变量中,结构如下:
struct with fields:
baseline: {18×1 cell}
stimuli: {18×1 cell}
与刺激电影片段相关的记录被储存在“stimuli”变量中,在每个电影片段之前显示的中性片段的记录被储存在“baseline”变量中。这个单元baseline{i}和stimuli{i}包含与第i个电影片段相关的数据。
对于ECG,每个记录是M*2矩阵的形式,M代表可获得样本的数量,每一列包含的这两个ECG通道的样本。
对于EEG,每个记录时M*14矩阵的形式,M代表可获得样本的数量,每一列包含的14个EEG通道的样本。
EEG记录的第j列代表以下电极位置:
致谢
作者感谢Thomas Cuntz 和Sebastian Palk在他们的BSc (Hons)项目下收集的数据。
免责声明
虽然采取了各种措施以确保DREAMER数据集中数据的准确性,作者和苏格兰西大学并不提供任何保证,并且对所有费用,损失,损害(包括间接的获结果损害),由于任何方式和任何原因提供的数据不准确或不完整而可能产生的费用免除所有责任(包括但不限于过失责任)。2017,苏格兰西大学,苏格兰,英国。
联系
对DREAMER数据集的任何问题请联系Stamos.Katsigiannis@uws.ac.uk,苏格兰西大学,工程与计算机学院
参考文献
[1] C. A. Gabert-Quillen, E. E. Bartolini, B. T. Abravanel, and C. A. Sanislow, “Ratings for emotion film clips,” Behavior Research Methods, vol. 47, no. 3, pp. 773–787, 2015.
[2] S. Katsigiannis, N. Ramzan, “DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices,” IEEE Journal of Biomedical and Health Informatics, 2017. In press. doi: 10.1109/JBHI.2017.2688239
(如有错误,欢迎指正)