轻松玩转书生·浦语大模型趣味Demo
课程笔记
大模型及InternLM模型介绍
- 什么是大模型?
人工智能领域中参数数量巨大、拥有庞大计算能力和参数规模的模型。 - 大模型特点及应用
利用大量数据进行训练。
拥有数十亿甚至数千亿个参数。
模型在各种任务中展现出惊人的性能。
InternLM-Chat-7B
通过单一的代码库,InternLM 支持在拥有数千个 GPU 的大型集群上进行预训练,并在单个 GPU 上进行微调,同时实现了卓越的性能优化。在 1024 个 GPU 上训练时,InternLM 可以实现近 90% 的加速效率。
InternLM-7B 包含了一个拥有 70 亿参数的基础模型和一个为实际场景量身定制的对话模型。该模型具有以下特点:
- 利用数万亿的高质量 token进行训练,建立了一个强大的知识库。
- 支持8k token的上下文窗口长度,使得输入序列更长并增强了推理能力。
Lagent 智能体工具调用
Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,用户可以快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。架构如下图所示:
浦语·灵笔图文创作理解
浦语·灵笔是基于书生·浦语大语言模型研发的视觉-语言大模型,提供出色的图文理解和创作能力,具有多项优势:
- 为用户打造图文并貌的专属文章。
- 设计了高效的训练策略,为模型注入海量的多模态概念和知识数据,赋予其强大的图文理解和对话能力。
作业
基础作业
使用 InternLM-Chat-7B 模型生成 300 字的小故事
下面这张图是命令行运行的截图,问了一个比较经典的林黛玉倒拔垂杨柳的问题,果不其然还是有点幻觉问题的哈哈哈。
熟悉 hugging face 下载功能
直接运行文档提供的下载代码是会报下图的错误:
运行前导入镜像源即可成功下载: