粒子在 n 維空間中「正定勢場」的定態 Schrödinger 方程

1 引言

在《量子力學》1這本書中,其中一節的內容就是關於「一維諧振子」的定態 Schrödinger 方程2。內容如下﹕

一維諧振子的勢場 V ( x ) = 1 2 m ω 2 x 2 V(x) = \frac{1}{2}m\omega^2x^2 V(x)=21mω2x2
其定態波函數 ψ ( x ) \psi(x) ψ(x) 滿足 − ℏ 2 2 m d 2 ψ d x 2 + 1 2 m ω 2 x 2 ψ = E ψ -\frac{\hbar^2}{2m}\frac{d^2 \psi}{dx^2}+\frac{1}{2}m\omega^2x^2\psi=E\psi 2m2dx2d2ψ+21mω2x2ψ=Eψ
解方程後得 ψ n ( x ) = N n exp ⁡ ( − α 2 x 2 2 ) H n ( α x ) \psi_n(x)=N_n\exp(-\frac{\alpha^2x^2}{2})H_n(\alpha x) ψn(x)=Nnexp(2α2x2)Hn(αx)

N n N_n Nn 是歸一化因子 α π 1 2 ⋅ 2 n ⋅ n ! \sqrt{\frac{\alpha}{\pi^{\frac{1}{2}}\cdot 2^n\cdot n!}} π212nn!α
α \alpha α 是位移無量綱化因子 m ω ℏ \sqrt{\frac{m\omega}{\hbar}} mω
H n ( x ) H_n(x) Hn(x) n n n 階 Hermite 多項式 ( − 1 ) n exp ⁡ ( x 2 ) d n d x n exp ⁡ ( − x 2 ) (-1)^n\exp(x^2)\frac{d^n}{dx^n}\exp(-x^2) (1)nexp(x2)dxndnexp(x2)
E n E_n En 是粒子能級分佈 ( n + 1 2 ) ℏ ω (n+\frac{1}{2})\hbar\omega (n+21)ω

我基於一維諧振子的理論,延伸到二維諧振子,逐步延伸 n 維諧振子,然後由二維諧振子延伸到二維「正定勢場」下的波函數,最後擴展到 n 維空間「正定勢場」下的波函數。

2 二維諧振子

二維諧振子下的勢場
V ( x , y ) = 1 2 m ω 2 ( x 2 + y 2 ) V(x,y)=\frac{1}{2}m\omega^2(x^2+y^2) V(x,y)=21mω2(x2+y2)
其定態波函數 ψ ( x , y ) \psi(x,y) ψ(x,y) 滿足
− ℏ 2 2 m ∇ 2 ψ ( x , y ) + 1 2 m ω 2 ( x 2 + y 2 ) ψ ( x , y ) = E ψ ( x , y ) -\frac{\hbar^2}{2m}\nabla^2\psi(x,y)+\frac{1}{2}m\omega^2(x^2+y^2)\psi(x,y)=E\psi(x,y) 2m22ψ(x,y)+21mω2(x2+y2)ψ(x,y)=Eψ(x,y)
定義算子
H x ^ = − ℏ 2 2 m ∂ 2 ∂ x 2 + 1 2 m ω 2 x 2 \hat{H_x}=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+\frac{1}{2}m\omega^2x^2 Hx^=2m2x22+21mω2x2
H y ^ = − ℏ 2 2 m ∂ 2 ∂ y 2 + 1 2 m ω 2 y 2 \hat{H_y}=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial y^2}+\frac{1}{2}m\omega^2y^2 Hy^=2m2y22+21mω2y2
利用分離變量法,設 ψ ( x , y ) = f ( x ) g ( y ) \psi(x,y)=f(x)g(y) ψ(x,y)=f(x)g(y),所以有
H ^ ψ = g ( y ) H x ^ f ( x ) + f ( x ) H y ^ g ( y ) = E f ( x ) g ( y ) f ( x ) H y ^ g ( y ) = ( E f ( x ) − H x ^ f ( x ) ) g ( y ) H y ^ g ( y ) = E y g ( y )  且  H x ^ f ( x ) ) = ( E − E y ) f ( x ) = E x f ( x ) \hat{H}\psi=g(y)\hat{H_x}f(x)+f(x)\hat{H_y}g(y)=Ef(x)g(y)\\[1em] f(x)\hat{H_y}g(y)=(Ef(x)-\hat{H_x}f(x))g(y)\\[1em] \hat{H_y}g(y)=E_yg(y)\ \text{且}\ \hat{H_x}f(x))=(E-E_y)f(x)=E_xf(x) H^ψ=g(y)Hx^f(x)+f(x)Hy^g(y)=Ef(x)g(y)f(x)Hy^g(y)=(Ef(x)Hx^f(x))g(y)Hy^g(y)=Eyg(y)  Hx^f(x))=(EEy)f(x)=Exf(x)
由一維諧振子的結論可得, H x ^ \hat{H_x} Hx^ H y ^ \hat{H_y} Hy^ 的本征值都是 { E 1 , n } n ≥ 0 \{E_{1,n}\}_{n\geq0} {E1,n}n0,對應的本征函數是 { ψ n ( x ) } n ≥ 0 \{\psi_n(x)\}_{n\geq0} {ψn(x)}n0 { ψ n ( y ) } n ≥ 0 \{\psi_n(y)\}_{n\geq0} {ψn(y)}n0
現在 f f f g g g 分別是 H x ^ \hat{H_x} Hx^ H y ^ \hat{H_y} Hy^ 的本征函數,所以 f ∈ { ψ n ( x ) } n ≥ 0 f \in \{\psi_n(x)\}_{n\geq0} f{ψn(x)}n0 g ∈ { ψ n ( y ) } n ≥ 0 g \in \{\psi_n(y)\}_{n\geq0} g{ψn(y)}n0,即 ψ m + n ( x , y ) = ψ m ( x ) ψ n ( y ) \psi_{m+n}(x,y)=\psi_m(x)\psi_n(y) ψm+n(x,y)=ψm(x)ψn(y)。與此同時,對應的能級是 E 2 , N = E m n = E 1 , m + E 1 , n = ( m + n + 1 ) ℏ ω E_{2,N}=E_{mn}=E_{1,m}+E_{1,n}=(m+n+1)\hbar\omega E2,N=Emn=E1,m+E1,n=(m+n+1)ω,簡並度是 ( N + 1 1 ) = N + 1 \left(\begin{matrix}N+1\\1\end{matrix}\right)=N+1 (N+11)=N+1

3 n n n 維諧振子

以下用數學歸納法來證明如下命題﹕

n n n 維諧振子的勢場為 V ( r n ⃗ ) = V ( x 1 , x 2 , ⋯   , x n ) = 1 2 m ω 2 r n ⃗ 2 V(\vec{r_n}) = V(x_1,x_2,\cdots,x_n) = \frac{1}{2}m\omega^2\vec{r_n}^2 V(rn )=V(x1,x2,,xn)=21mω2rn 2
本征波函數族為 { ∏ k = 1 n ψ N k ( x k ) ∣ ∑ k = 1 n N k = N } \{\prod\limits_{k=1}^{n}\psi_{N_k}(x_k)|\sum\limits_{k=1}^{n}N_k=N\} {k=1nψNk(xk)k=1nNk=N},其中 ψ k \psi_k ψk 是一維諧振子各能級 E k E_k Ek 對應的定態波函數。與此同時,對應的本征能級是 E n , N = ( ∑ k = 1 n N k + n 2 ) ℏ ω = ( N + n 2 ) ℏ ω E_{n,N}=(\sum\limits_{k=1}^nN_k+\frac{n}{2})\hbar\omega=(N+\frac{n}{2})\hbar\omega En,N=(k=1nNk+2n)ω=(N+2n)ω,簡並度是 ( N + n − 1 n − 1 ) \left(\begin{matrix}N+n-1\\n-1\end{matrix}\right) (N+n1n1)

(1.) 當 n = 1 n = 1 n=1 時,命題等價於一維諧振子結論
(2.) 假設 n = t − 1 n = t - 1 n=t1 時命題成立,那麼當 n = t n = t n=t 時,設 ψ ( r t ⃗ ) = ψ ( r t − 1 → , x t ) = f ( r t − 1 → ) g ( x t ) \psi(\vec{r_t})=\psi(\overrightarrow{r_{t-1}},x_t) = f(\overrightarrow{r_{t-1}})g(x_t) ψ(rt )=ψ(rt1 ,xt)=f(rt1 )g(xt)

∇ r t − 1 → 2 = ∑ i = 1 t − 1 ∂ 2 ∂ x i 2 H r t − 1 → ^ = − ℏ 2 2 m ∇ r t − 1 → 2 + 1 2 m ω 2 r t 1 → 2 H x t ^ = − ℏ 2 2 m ∂ 2 ∂ x t 2 + 1 2 m ω 2 x t 2 \nabla_{\overrightarrow{r_{t-1}}}^2=\sum_{i=1}^{t-1}\frac{\partial^2}{\partial x_i^2}\\[1em] \hat{H_{\overrightarrow{r_{t-1}}}}=-\frac{\hbar^2}{2m}\nabla_{\overrightarrow{r_{t-1}}}^2+\frac{1}{2}m\omega^2\overrightarrow{r_{t_1}}^2\\[1em] \hat{H_{x_t}}=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x_t^2}+\frac{1}{2}m\omega^2x_t^2 rt1 2=i=1t1xi22Hrt1 ^=2m2rt1 2+21mω2rt1 2Hxt^=2m2xt22+21mω2xt2
所以
H ^ = − ℏ 2 2 m ∇ r t → 2 + 1 2 m ω 2 r t → 2 = ( − ℏ 2 2 m ∇ r t − 1 → 2 + 1 2 m ω 2 r t 1 → 2 ) + ( − ℏ 2 2 m ∂ 2 ∂ x t 2 + 1 2 m ω 2 x t 2 ) = H r t − 1 → ^ + H x t ^ \hat{H}=-\frac{\hbar^2}{2m}\nabla_{\overrightarrow{r_t}}^2+\frac{1}{2}m\omega^2\overrightarrow{r_t}^2=\left(-\frac{\hbar^2}{2m}\nabla_{\overrightarrow{r_{t-1}}}^2+\frac{1}{2}m\omega^2\overrightarrow{r_{t_1}}^2\right)+\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x_t^2}+\frac{1} {2}m\omega^2x_t^2\right)=\hat{H_{\overrightarrow{r_{t-1}}}}+\hat{H_{x_t}} H^=2m2rt 2+21mω2rt 2=(2m2rt1 2+21mω2rt1 2)+(2m2xt22+21mω2xt2)=Hrt1 ^+Hxt^
利用分離變量法,設 ψ ( r t → ) = f ( r t − 1 → ) g ( r t ) \psi(\overrightarrow{r_t})=f(\overrightarrow{r_{t-1}})g(r_t) ψ(rt )=f(rt1 )g(rt),類似二維諧振子般,可以得到如下關係式
H x t ^ g ( y ) = E x t g ( x t )  且  H r t − 1 → ^ f ( r t − 1 → ) ) = ( E − E x t ) f ( r t − 1 → ) = E r t − 1 → f ( r t − 1 → ) \hat{H_{x_t}}g(y)=E_{x_t}g(x_t)\ \text{且}\ \hat{H_{\overrightarrow{r_{t-1}}}}f(\overrightarrow{r_{t-1}}))=(E-E_{x_t})f(\overrightarrow{r_{t-1}})=E_{\overrightarrow{r_{t-1}}}f(\overrightarrow{r_{t-1}}) Hxt^g(y)=Extg(xt)  Hrt1 ^f(rt1 ))=(EExt)f(rt1 )=Ert1 f(rt1 )
由 (1.) 知, H x t ^ \hat{H_{x_t}} Hxt^ 的本征值是 { E 1 , N } N ≥ 0 = { ( N + 1 2 ) ℏ ω } N ≥ 0 \{E_{1,N}\}_{N\geq0}=\{(N+\frac{1}{2})\hbar\omega\}_{N\geq0} {E1,N}N0={(N+21)ω}N0,對應的本征函數是 { ψ N ( x t ) } N ≥ 0 \{\psi_N(x_t)\}_{N\geq0} {ψN(xt)}N0
由歸納假設知, H r t − 1 → ^ \hat{H_{\overrightarrow{r_{t-1}}}} Hrt1 ^ 的本征值是 { E t − 1 , N } N ≥ 0 = { ( N + t − 1 2 ) ℏ ω } n ≥ 0 \{E_{t-1,N}\}_{N\geq0}=\{(N+\frac{t-1}{2})\hbar\omega\}_{n\geq0} {Et1,N}N0={(N+2t1)ω}n0,每一個本征值 E t − 1 , N E_{t-1,N} Et1,N 對應的本征函數族是 { ∏ k = 1 t − 1 ψ N k ( x k ) ∣ ∑ k = 1 t − 1 N k = N } \{\prod\limits_{k=1}^{t-1}\psi_{N_k}(x_k)|\sum\limits_{k=1}^{t-1}N_k=N\} {k=1t1ψNk(xk)k=1t1Nk=N}
因此, H ^ \hat{H} H^ 的本征值便是 { E t , N } N ≥ 0 = { E t − 1 , N + E 1 , 0 } N ≥ 0 = { ( N + t − 1 2 + 0 + 1 2 ) ℏ ω } N ≥ 0 = { ( N + t 2 ) } N ≥ 0 \{E_{t,N}\}_{N\geq0}=\{E_{t-1,N}+E_{1,0}\}_{N\geq0}=\{(N+\frac{t-1}{2}+0+\frac{1}{2})\hbar\omega\}_{N\geq0}=\{(N+\frac{t}{2})\}_{N\geq0} {Et,N}N0={Et1,N+E1,0}N0={(N+2t1+0+21)ω}N0={(N+2t)}N0,對應的本征值函數族是 { ∏ k = 1 t ψ N k ( x k ) ∣ ∑ k = 1 t N k = N } \{\prod\limits_{k=1}^{t}\psi_{N_k}(x_k)|\sum\limits_{k=1}^{t}N_k=N\} {k=1tψNk(xk)k=1tNk=N}

結合(1.) 和 (2.),根據數學歸納原理可知,原命題對於任意正整數 n n n 皆成立。

4 二維「正定勢場」下的定態 Schrödinger 方程

我先不引入「正定勢場」的概念,而是用另一個特殊勢場作為引入,求解其定態 Schrödinger 方程。
V ( x , y ) = 1 2 m ω 2 ( x 2 + x y + y 2 ) V(x,y)=\frac{1}{2}m\omega^2(x^2+xy+y^2) V(x,y)=21mω2(x2+xy+y2)
考慮座標變換(讀者可以先自行思考)
( u v ) = ( 1 2 1 2 1 2 − 1 2 ) ( x y ) \left( \begin{matrix} u\\ v \end{matrix} \right)= \left( \begin{matrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{matrix} \right) \left( \begin{matrix} x\\ y \end{matrix} \right) (uv)=(2 12 12 12 1)(xy)
u u u v v v 表示 ∇ 2 \nabla^2 2
∂ ∂ x = ∂ ∂ u ∂ u ∂ x + ∂ ∂ v ∂ v ∂ x = 1 2 ( ∂ ∂ u + ∂ ∂ v ) ∂ 2 ∂ x 2 = 1 2 ( ∂ ∂ u + ∂ ∂ v ) ⋅ 1 2 ( ∂ ∂ u + ∂ ∂ v ) = 1 2 ( ∂ 2 ∂ u 2 + ∂ 2 ∂ v 2 + ∂ 2 ∂ u ∂ v + ∂ 2 ∂ v ∂ u ) \frac{\partial}{\partial x}=\frac{\partial}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial}{\partial v}\frac{\partial v}{\partial x}=\frac{1}{\sqrt{2}}(\frac{\partial}{\partial u}+\frac{\partial}{\partial v})\\[1em] \frac{\partial^2}{\partial x^2}=\frac{1}{\sqrt{2}}(\frac{\partial}{\partial u}+\frac{\partial}{\partial v})\cdot\frac{1}{\sqrt{2}}(\frac{\partial}{\partial u}+\frac{\partial}{\partial v})=\frac{1}{2}(\frac{\partial^2}{\partial u^2}+\frac{\partial^2}{\partial v^2}+\frac{\partial^2}{\partial u\partial v}+\frac{\partial^2}{\partial v\partial u}) x=uxu+vxv=2 1(u+v)x22=2 1(u+v)2 1(u+v)=21(u22+v22+uv2+vu2)
同理可得
∂ 2 ∂ y 2 = 1 2 ( ∂ 2 ∂ u 2 + ∂ 2 ∂ v 2 − ∂ 2 ∂ u ∂ v − ∂ 2 ∂ v ∂ u ) ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 = ∂ 2 ∂ u 2 + ∂ 2 ∂ v 2 \frac{\partial^2}{\partial y^2}=\frac{1}{2}(\frac{\partial^2}{\partial u^2}+\frac{\partial^2}{\partial v^2}-\frac{\partial^2}{\partial u\partial v}-\frac{\partial^2}{\partial v\partial u})\\[1em] \nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}=\frac{\partial^2}{\partial u^2}+\frac{\partial^2}{\partial v^2} y22=21(u22+v22uv2vu2)2=x22+y22=u22+v22
簡記
∇ x y 2 = ∇ u v 2 \nabla^2_{xy}=\nabla^2_{uv} xy2=uv2
u u u v v v 改寫勢場﹕
V = 1 2 m ω 2 ( 3 2 u 2 + 1 2 v 2 ) = 1 2 m ( 3 2 ω ) 2 u 2 + 1 2 m ( 1 2 ω ) 2 v 2 V=\frac{1}{2}m\omega^2(\frac{3}{2}u^2+\frac{1}{2}v^2)=\frac{1}{2}m(\sqrt{\frac{3}{2}}\omega)^2u^2+\frac{1}{2}m(\sqrt{\frac{1}{2}}\omega)^2v^2 V=21mω2(23u2+21v2)=21m(23 ω)2u2+21m(21 ω)2v2

H x , ω ^ = − ℏ 2 2 m ∂ 2 ∂ x 2 + 1 2 m ω 2 x 2 ψ ω , n ( x ) = m ω ℏ π 1 2 ⋅ 2 n ⋅ n ! exp ⁡ ( − m ω ℏ x 2 2 ) H n ( m ω ℏ x ) \hat{H_{x,\omega}}=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+\frac{1}{2}m\omega^2x^2\\[1em] \psi_{\omega,n}(x)=\sqrt{\frac{\sqrt{\frac{m\omega}{\hbar}}}{\pi^{\frac{1}{2}}\cdot 2^n\cdot n!}}\exp(-\frac{\frac{m\omega}{\hbar}x^2}{2})H_n(\sqrt{\frac{m\omega}{\hbar}} x) Hx,ω^=2m2x22+21mω2x2ψω,n(x)=π212nn!mω exp(2mωx2)Hn(mω x)
所以在這個勢場下的哈密頓算符是
H ^ = H u , 3 2 ω ^ + H v , 1 2 ω ^ \hat{H}=\hat{H_{u,\sqrt{\frac{3}{2}}\omega}}+\hat{H_{v,\sqrt{\frac{1}{2}}\omega}} H^=Hu,23 ω^+Hv,21 ω^
如二維諧振子般利用分離變量法,可得本征波函數
ψ ( x , y ) = ψ 3 2 ω , m ( u ) ψ 1 2 ω , n ( v ) = ψ 3 2 ω , m ( x + y 2 ) ψ 1 2 ω , n ( x − y 2 ) \psi(x,y)=\psi_{\sqrt{\frac{3}{2}}\omega,m}(u)\psi_{\sqrt{\frac{1}{2}}\omega,n}(v)=\psi_{\sqrt{\frac{3}{2}}\omega,m}(\frac{x+y}{\sqrt{2}})\psi_{\sqrt{\frac{1}{2}}\omega,n}(\frac{x-y}{\sqrt{2}}) ψ(x,y)=ψ23 ω,m(u)ψ21 ω,n(v)=ψ23 ω,m(2 x+y)ψ21 ω,n(2 xy)
對應的本征能級是
E m , n = [ ( m + 1 2 ) 3 2 + ( n + 1 2 ) 1 2 ] ℏ ω E_{m,n}=\left[(m+\frac{1}{2})\sqrt{\frac{3}{2}}+(n+\frac{1}{2})\sqrt{\frac{1}{2}}\right]\hbar\omega Em,n=[(m+21)23 +(n+21)21 ]ω
顯然地,這個能級是非簡並的。

忽略能級簡並度的因素,我們去擴展這個問題﹕

如果勢函數 V ( x , y ) V(x,y) V(x,y) 可以寫成
V ( x , y ) = 1 2 m ω 2 ( x y ) ( a b b c ) ( x y ) V(x,y)=\frac{1}{2}m\omega^2\left(\begin{matrix}x&y\end{matrix}\right)\left(\begin{matrix}a&b\\b&c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right) V(x,y)=21mω2(xy)(abbc)(xy)
且當 ( x , y ) ≠ ( 0 , 0 ) (x,y) \neq (0,0) (x,y)=(0,0) V ( x , y ) > 0 V(x,y) > 0 V(x,y)>0
那麼定態波函數 ψ ( x , y ) \psi(x,y) ψ(x,y) 是否可以寫成 ψ λ 1 ω , m ( k 1 x + b 1 y ) ⋅ ψ λ 2 ω , n ( k 2 x + b 2 y ) \psi_{\lambda_1\omega,m}(k_1x+b_1y)\cdot\psi_{\lambda_2\omega,n}(k_2x+b_2y) ψλ1ω,m(k1x+b1y)ψλ2ω,n(k2x+b2y)的形式呢?(其中, k 1 , b 1 , k 2 , b 2 , λ 1 , λ 2 k_1,b_1,k_2,b_2,\lambda_1,\lambda_2 k1,b1,k2,b2,λ1,λ2 都是常數)

注意到矩陣 ( a b b c ) \left(\begin{matrix}a&b\\b&c\end{matrix}\right) (abbc) 是實對稱正定矩陣 (若讀者對正定矩陣不瞭解,可以參考 MIT 的 Introduction to Linear Algebra3 書籍),所以可以進行正交對角化。即存在一個正交矩陣 Q = ( q 11 q 12 q 21 g 22 ) Q=\left(\begin{matrix}q_{11}&q_{12}\\q_{21}&g_{22}\end{matrix}\right) Q=(q11q21q12g22) 和一個對角矩陣 Λ = d i a g ( λ 1 2 , λ 2 2 ) \Lambda=diag(\lambda_1^2,\lambda_2^2) Λ=diag(λ12,λ22),滿足
A = Q T Λ Q V ( x , y ) = 1 2 m ω 2 ( x y ) Q T Λ Q ( x y ) = 1 2 m ω 2 q ⃗ T Λ q ⃗ = 1 2 m ( λ 1 ω ) 2 u 2 + 1 2 m ( λ 2 ω ) 2 v 2 A=Q^T\Lambda Q\\[1em] V(x,y)=\frac{1}{2}m\omega^2\left(\begin{matrix}x&y\end{matrix}\right)Q^T\Lambda Q\left(\begin{matrix}x\\y\end{matrix}\right)=\frac{1}{2}m\omega^2\vec{q}^T\Lambda \vec{q}=\frac{1}{2}m(\lambda_1\omega)^2u^2+\frac{1}{2}m(\lambda_2\omega)^2v^2 A=QTΛQV(x,y)=21mω2(xy)QTΛQ(xy)=21mω2q TΛq =21m(λ1ω)2u2+21m(λ2ω)2v2
此時, u = q 11 x + q 12 y u=q_{11}x+q_{12}y u=q11x+q12y v = q 21 x + q 22 y v=q_{21}x+q_{22}y v=q21x+q22y
下面證明﹕

∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 = ∂ 2 ∂ u 2 + ∂ 2 ∂ v 2 \frac{\partial^2}{\partial x^2}+ \frac{\partial^2}{\partial y^2}= \frac{\partial^2}{\partial u^2}+ \frac{\partial^2}{\partial v^2} x22+y22=u22+v22

證﹕

∂ ∂ x = ∂ ∂ u ∂ u ∂ x + ∂ ∂ v ∂ v ∂ x = q 11 ∂ ∂ u + q 21 ∂ ∂ v ∂ 2 ∂ x 2 = ∂ ∂ x ⋅ ∂ ∂ x = ( q 11 ∂ ∂ u + q 21 ∂ ∂ v ) ( q 11 ∂ ∂ u + q 21 ∂ ∂ v ) = q 11 2 ∂ 2 ∂ u 2 + q 21 2 ∂ 2 ∂ u 2 + q 11 q 21 ( ∂ 2 ∂ u ∂ v + ∂ 2 ∂ v ∂ u ) \frac{\partial}{\partial x} = \frac{\partial}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial}{\partial v}\frac{\partial v}{\partial x} = q_{11}\frac{\partial}{\partial u}+q_{21}\frac{\partial}{\partial v}\\[1em] \frac{\partial^2}{\partial x^2}=\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial x}=(q_{11}\frac{\partial}{\partial u}+q_{21}\frac{\partial}{\partial v})(q_{11}\frac{\partial}{\partial u}+q_{21}\frac{\partial}{\partial v})=q_{11}^2\frac{\partial^2}{\partial u^2}+q_{21}^2\frac{\partial^2}{\partial u^2}+q_{11}q_{21}(\frac{\partial^2}{\partial u\partial v}+\frac{\partial^2}{\partial v\partial u}) x=uxu+vxv=q11u+q21vx22=xx=(q11u+q21v)(q11u+q21v)=q112u22+q212u22+q11q21(uv2+vu2)
同理可得
∂ 2 ∂ y 2 = q 12 2 ∂ 2 ∂ u 2 + q 22 2 ∂ 2 ∂ u 2 + q 12 q 22 ( ∂ 2 ∂ u ∂ v + ∂ 2 ∂ v ∂ u ) \frac{\partial^2}{\partial y^2}=q_{12}^2\frac{\partial^2}{\partial u^2}+q_{22}^2\frac{\partial^2}{\partial u^2}+q_{12}q_{22}(\frac{\partial^2}{\partial u\partial v}+\frac{\partial^2}{\partial v\partial u}) y22=q122u22+q222u22+q12q22(uv2+vu2)
利用正交矩陣的定義
q 11 2 + q 12 2 = q 21 2 + q 22 2 = 1 q 11 q 21 + q 12 q 22 = 0 q_{11}^2+q_{12}^2=q_{21}^2+q_{22}^2=1\\[1em] q_{11}q_{21}+q_{12}q_{22}=0 q112+q122=q212+q222=1q11q21+q12q22=0
可證得
∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 = ∂ 2 ∂ u 2 + ∂ 2 ∂ v 2 \frac{\partial^2}{\partial x^2}+ \frac{\partial^2}{\partial y^2}= \frac{\partial^2}{\partial u^2}+ \frac{\partial^2}{\partial v^2} x22+y22=u22+v22

利用上方結論,可以得出算符量
T ^ = T u ^ + T v ^ V ^ = V λ 1 ω ^ + V λ 2 ω ^ H ^ = H λ 1 ω , u ^ + H λ 2 ω , v ^ \hat{T}=\hat{T_u}+\hat{T_v}\\[1em] \hat{V}=\hat{V_{\lambda_1\omega}}+\hat{V_{\lambda_2\omega}}\\[1em] \hat{H}=\hat{H_{\lambda_1\omega,u}}+\hat{H_{\lambda_2\omega,v}} T^=Tu^+Tv^V^=Vλ1ω^+Vλ2ω^H^=Hλ1ω,u^+Hλ2ω,v^
因此,本征波函數為
ψ ( x , y ) = ψ λ 1 ω , m ( u ) ψ λ 2 ω , n ( v ) = ψ λ 1 ω , m ( q 11 x + q 12 y ) ψ λ 2 ω , n ( q 21 x + q 22 y ) \psi(x,y)=\psi_{\lambda_1\omega,m}(u)\psi_{\lambda_2\omega,n}(v)=\psi_{\lambda_1\omega,m}(q_{11}x+q_{12}y)\psi_{\lambda_2\omega,n}(q_{21}x+q_{22}y) ψ(x,y)=ψλ1ω,m(u)ψλ2ω,n(v)=ψλ1ω,m(q11x+q12y)ψλ2ω,n(q21x+q22y)
對應的本征能級為
E m , n = [ ( m + 1 2 ) λ 1 + ( n + 1 2 ) λ 2 ] ℏ ω = ( m + 1 2 n + 1 2 ) Λ ( 1 1 ) ℏ ω E_{m,n}=\left[(m+\frac{1}{2})\lambda_1+(n+\frac{1}{2})\lambda_2\right]\hbar\omega=\left(\begin{matrix}m+\frac{1}{2}&n+\frac{1}{2}\end{matrix}\right)\sqrt{\Lambda}\left(\begin{matrix}1\\1\end{matrix}\right)\hbar\omega Em,n=[(m+21)λ1+(n+21)λ2]ω=(m+21n+21)Λ (11)ω

5 正定勢場的定義

定義﹕ 對於任意向量 r ⃗ = ( x 1 , x 2 , ⋯   , x n ) T ≠ 0 ⃗ T \vec{r}=(x_1,x_2,\cdots,x_n)^T\neq\vec{0}^T r =(x1,x2,,xn)T=0 T,勢場
V ( r ⃗ ) = 1 2 m ω 2 r ⃗ T A r ⃗ > 0 V(\vec{r})=\frac{1}{2}m\omega^2\vec{r}^TA\vec{r}>0 V(r )=21mω2r TAr >0
其中 A A A 是一個實數矩陣,那麼勢場 V V V 就是正定勢場。

一般而言, A A A 會被寫成實對稱矩陣 (若非,則 A A A 可用 A + A T 2 \frac{A+A^T}{2} 2A+AT 代替),下一節的矩陣 A A A 都會默認是實對稱矩陣。根據線性代數知識可知, A A A 就是正定矩陣。

6 n n n 維「正定勢場」下的定態 Schrödinger 方程

試着把二維情況推廣到 n n n 維空間中,結論又是否會成立呢?
考慮
r ⃗ = ( x 1 , x 2 , ⋯   , x n ) T ≠ 0 ⃗ T V ( r ⃗ ) = 1 2 m ω 2 r ⃗ T A n r ⃗ \vec{r}=(x_1,x_2,\cdots,x_n)^T\neq\vec{0}^T\\[1em] V(\vec{r})=\frac{1}{2}m\omega^2\vec{r}^TA_n\vec{r} r =(x1,x2,,xn)T=0 TV(r )=21mω2r TAnr
V V V 是一個正定勢場,尋找其本征波函數 ψ ( r ⃗ ) \psi(\vec{r}) ψ(r )
首先,對 A n A_n An 進行正交對角化,同時改寫勢能表達式﹕
A n = Q T Λ Q Λ = d i a g ( λ 1 2 , λ 2 2 , ⋯   , λ n 2 ) Q = ( q i j ) n × n = ( q 1 ⃗ T q 2 ⃗ T ⋮ q n ⃗ T ) V = 1 2 m ω 2 r ⃗ T Q T Λ Q r ⃗ = 1 2 m ω 2 u ⃗ T Λ u ⃗ = ∑ i = 1 n 1 2 m ( λ i ω ) 2 u i 2 ( u 1 , u 2 , ⋯   , u n ) T = u ⃗ = Q r ⃗ A_n = Q^T\Lambda Q\\ \Lambda=diag(\lambda_1^2,\lambda_2^2,\cdots,\lambda_n^2)\\[1em] Q=(q_{ij})_{n\times n}=\left(\begin{matrix}\vec{q_1}^T\\\vec{q_2}^T\\\vdots\\\vec{q_n}^T\end{matrix}\right)\\[1em] V = \frac{1}{2}m\omega^2\vec{r}^TQ^T\Lambda Q\vec{r}=\frac{1}{2}m\omega^2\vec{u}^T\Lambda\vec{u}=\sum_{i=1}^n\frac{1}{2}m(\lambda_i \omega)^2u_i^2\\(u_1,u_2,\cdots,u_n)^T=\vec{u}=Q\vec{r} An=QTΛQΛ=diag(λ12,λ22,,λn2)Q=(qij)n×n=q1 Tq2 Tqn TV=21mω2r TQTΛQr =21mω2u TΛu =i=1n21m(λiω)2ui2(u1,u2,,un)T=u =Qr
然後,我們證明一個結論﹕

若存在一個正交矩陣 Q = { q i j } n × n Q=\{q_{ij}\}_{n\times n} Q={qij}n×n,滿足 u ⃗ = Q r ⃗ = ( q 1 ⃗ T q 2 ⃗ T ⋮ q n ⃗ T ) r ⃗ \vec{u}=Q\vec{r}=\left(\begin{matrix}\vec{q_1}^T\\\vec{q_2}^T\\\vdots\\\vec{q_n}^T\end{matrix}\right)\vec{r} u =Qr =q1 Tq2 Tqn Tr ,那麼
∇ r ⃗ 2 = ∇ u ⃗ 2   ( ∑ i = 1 n ∂ 2 ∂ x i 2 = ∑ i = 1 n ∂ 2 ∂ u i 2 ) \nabla^2_{\vec{r}}=\nabla^2_{\vec{u}}\ (\sum_{i=1}^n\frac{\partial^2}{\partial x_i^2}=\sum_{i=1}^n\frac{\partial^2}{\partial u_i^2}) r 2=u 2 (i=1nxi22=i=1nui22)
證﹕
∂ ∂ x i = ∑ k = 1 n ∂ ∂ u k ∂ u k ∂ x i = ∑ k = 1 n q k i ∂ ∂ u k ∂ 2 ∂ x i 2 = ( ∑ k = 1 n q k i ∂ ∂ u k ) ( ∑ m = 1 n q m i ∂ ∂ u m ) = ∑ k = 1 n ∑ m = 1 n q k i q m i ∂ 2 ∂ u k ∂ u m ∇ r ⃗ 2 = ∑ i = 1 n ∂ 2 ∂ x i 2 = ∑ i = 1 n ∑ k = 1 n ∑ m = 1 n q k i q m i ∂ 2 ∂ u k ∂ u m = ∑ k = 1 n ∑ m = 1 n [ ∂ 2 ∂ u k ∂ u m ( ∑ i = 1 n q k i q m i ) ] = ∑ k = 1 n ∑ m = 1 n [ ∂ 2 ∂ u k ∂ u m ( q k ⃗ T q m ⃗ ) ] = ∑ k = 1 n ∑ m = 1 n [ ∂ 2 ∂ u k ∂ u m δ k m ] = ∑ k = 1 n ∂ 2 ∂ u k 2 = ∇ u ⃗ 2 \frac{\partial}{\partial x_i}=\sum_{k=1}^n\frac{\partial}{\partial u_k}\frac{\partial u_k}{\partial x_i}=\sum_{k=1}^nq_{ki}\frac{\partial}{\partial u_k}\\[1em] \frac{\partial^2}{\partial x_i^2} = (\sum_{k=1}^nq_{ki}\frac{\partial}{\partial u_k})(\sum_{m=1}^nq_{mi}\frac{\partial}{\partial u_m})=\sum_{k=1}^n\sum_{m=1}^nq_{ki}q_{mi}\frac{\partial^2}{\partial u_k\partial u_m}\\[1em] \nabla^2_{\vec{r}}=\sum_{i=1}^n\frac{\partial^2}{\partial x_i^2}=\sum_{i=1}^n\sum_{k=1}^n\sum_{m=1}^nq_{ki}q_{mi}\frac{\partial^2}{\partial u_k\partial u_m}=\sum_{k=1}^n\sum_{m=1}^n\left[\frac{\partial^2}{\partial u_k\partial u_m}\left(\sum_{i=1}^nq_{ki}q_{mi}\right)\right]=\sum_{k=1}^n\sum_{m=1}^n\left[\frac{\partial^2}{\partial u_k\partial u_m}\left(\vec{q_k}^T\vec{q_m}\right)\right]=\sum_{k=1}^n\sum_{m=1}^n\left[\frac{\partial^2}{\partial u_k\partial u_m}\delta_{km}\right]=\sum_{k=1}^n\frac{\partial^2}{\partial u_k^2}=\nabla^2_{\vec{u}}\\[1em] xi=k=1nukxiuk=k=1nqkiukxi22=(k=1nqkiuk)(m=1nqmium)=k=1nm=1nqkiqmiukum2r 2=i=1nxi22=i=1nk=1nm=1nqkiqmiukum2=k=1nm=1n[ukum2(i=1nqkiqmi)]=k=1nm=1n[ukum2(qk Tqm )]=k=1nm=1n[ukum2δkm]=k=1nuk22=u 2

因此,對應的算符量是
T i ^ = − ℏ 2 2 m ∂ 2 ∂ u i 2 V λ i ω , i ^ = 1 2 m ( λ i ω ) 2 u i 2 H λ i ω , i ^ = T i ^ + V λ ω , i ^ H ^ = ∑ i = 1 n H λ i ω , i ^ \hat{T_i}=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial u_i^2}\\[1em] \hat{V_{\lambda_i\omega,i}}=\frac{1}{2}m(\lambda_i \omega)^2u_i^2\\[1em] \hat{H_{\lambda_i\omega,i}}=\hat{T_i}+\hat{V_{\lambda\omega,i}}\\[1em] \hat{H}=\sum_{i=1}^n\hat{H_{\lambda_i\omega,i}} Ti^=2m2ui22Vλiω,i^=21m(λiω)2ui2Hλiω,i^=Ti^+Vλω,i^H^=i=1nHλiω,i^
如第 3 節的「 n n n 維諧振子」般利用數學歸納法可得,本征波函數
ψ ( r ⃗ ) = ∏ i = 1 n ψ λ i ω , m i ( q i ⃗ T r ⃗ ) \psi(\vec{r})=\prod_{i=1}^{n}\psi_{\lambda_i\omega,m_i}(\vec{q_i}^T \vec{r}) ψ(r )=i=1nψλiω,mi(qi Tr )
對應的本征能級 m ⃗ = ( m i ) n × 1 T \vec{m}=(m_i)^T_{n\times 1} m =(mi)n×1T
E m ⃗ = ℏ ω ∑ i = 1 n ( m i + 1 2 ) λ i = ( m ⃗ T + ( 1 2 ) 1 × n ) Λ ( 1 ) n × 1 ℏ ω E_{\vec{m}}=\hbar\omega\sum_{i=1}^n(m_i+\frac{1}{2})\lambda_i=(\vec{m}^T+(\frac{1}{2})_{1\times n})\sqrt{\Lambda}(1)_{n\times 1}\hbar\omega Em =ωi=1n(mi+21)λi=(m T+(21)1×n)Λ (1)n×1ω

7 資料來源


  1. 《量子力學》,錢伯初,高等教育出版社,2017年。 ↩︎

  2. 一維諧振子https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Harmonic_oscillator ↩︎

  3. Gilbert Strang, Introduction to Linear Algebra, fifth edition ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值