关于cos(x^2)的傅里叶逆变换(Inverse Fourier Transform)

1. 研究背景

其实就是笔者在经历了 5 门考试后的睡觉前,脑子突然闪过了一个想法,如何把傅里叶变换(Fourier Transform)往更无聊的方向去使用。经过了 3 秒钟的深思熟虑,我决定把 cos ⁡ ( Ω 2 ) \cos(\Omega^2) cos(Ω2) 这样一个函数进行傅里叶逆变换,看看能不能 自讨苦吃 有新发现。

2. 傅里叶(逆)变换

关于傅里叶变换的历史,在这里就不详细展开说了,如有兴趣,可以透过
百度百科的资料去了解。总体而言,就是表述信号 x ( t ) x(t) x(t) 的时域与频域 X ( Ω ) X(\Omega) X(Ω) 的关系。

1.1 定义

( Fourier Transform )   X ( Ω ) = ∫ − ∞ + ∞ x ( t ) e − j Ω t d t ( Inverse Fourier Transform )   x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( Ω ) e j Ω t d Ω \begin{aligned} (\text{Fourier Transform})\ &X(\Omega) = \int_{-\infty}^{+\infty}x(t)e^{-j\Omega t} dt\\[2em] (\text{Inverse Fourier Transform})\ &x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}X(\Omega)e^{j\Omega t} d\Omega \end{aligned} (Fourier Transform) (Inverse Fourier Transform) X(Ω)=+x(t)ejΩtdtx(t)=2π1+X(Ω)ejΩtdΩ

1.2 性质

以下只介绍两个重要性质:

1.2.1 线性

a x ( t ) + b y ( t ) → a X ( Ω ) + b Y ( Ω ) ax(t)+by(t) \rightarrow aX(\Omega) + bY(\Omega) ax(t)+by(t)aX(Ω)+bY(Ω)

1.2.2 微分乘积对偶性

d x ( t ) d t → j Ω X ( Ω ) t x ( t ) → j d X ( Ω ) d Ω \frac{dx(t)}{dt} \rightarrow j\Omega X(\Omega)\\[2em] tx(t) \rightarrow j\frac{dX(\Omega)}{d\Omega} dtdx(t)jΩX(Ω)tx(t)jdΩdX(Ω)

3. 函数介绍

X ( Ω ) = cos ⁡ ( Ω 2 ) X(\Omega) = \cos(\Omega^2) X(Ω)=cos(Ω2)
在这里插入图片描述
在信号分析的方面, X ( Ω ) X(\Omega) X(Ω) 是一个带阻滤波器,对频率 Ω = ± ( 2 n − 1 ) π 2 \Omega = \pm\sqrt{\frac{(2n-1)\pi}{2}} Ω=±2(2n1)π 分量进行过滤,换句话说, X ( Ω ) X(\Omega) X(Ω) 是这些频率的陷波器。

利用傅里叶逆变换的定义,假设时域信号是 x ( t ) x(t) x(t),那么
x ( t ) = 1 2 π ∫ − ∞ + ∞ cos ⁡ ( Ω 2 ) e j Ω t d Ω x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}\cos(\Omega^2)e^{j\Omega t} d\Omega x(t)=2π1+cos(Ω2)ejΩtdΩ

4. 研究方法

X ( Ω ) X(\Omega) X(Ω) 进行 “自组装” 操作,同步 “更新“ 时域 x ( t ) x(t) x(t) 的状况。

4.1 自组装

X ( Ω ) X(\Omega) X(Ω) 进行微分操作,得出关于 X ( Ω ) X(\Omega) X(Ω) 的微分方程;同时,利用傅里叶逆变换的性质,得出每一步操作后的时域信号 x ′ ( t ) = f ( x ( t ) ) x'(t) = f(x(t)) x(t)=f(x(t)),最后得出关于 x ( t ) x(t) x(t) 的微分方程,解出方程的解就是时域信号 x ( t ) x(t) x(t) 的表达式。

4.1.1 第一次微分

利用 微分乘积对偶性,对 X ( Ω ) X(\Omega) X(Ω) 关于 Ω \Omega Ω 进行微分操作
j d X ( Ω ) d Ω = − 2 sin ⁡ ( Ω 2 ) ( j Ω ) (1) j\frac{dX(\Omega)}{d\Omega} = -2\sin(\Omega^2)(j\Omega) \tag{1} jdΩdX(Ω)=2sin(Ω2)(jΩ)(1)
t x ( t ) = 1 2 π ∫ − ∞ ∞ [ − 2 sin ⁡ ( Ω 2 ) ⋅ ( j Ω ) ] e j Ω t d Ω (2) tx(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}[-2\sin(\Omega^2)\cdot(j\Omega)]e^{j\Omega t}d\Omega\tag{2} tx(t)=2π1[2sin(Ω2)(jΩ)]ejΩtdΩ(2)

Y ( Ω ) = sin ⁡ ( Ω 2 ) Y(\Omega) = \sin(\Omega^2) Y(Ω)=sin(Ω2),对应的时域信号是 y ( t ) y(t) y(t)
再次利用 微分乘积对偶性 ,结合 (2) 式可得 (3) 式
t x ( t ) = 1 2 π ∫ − ∞ ∞ [ − 2 sin ⁡ ( Ω 2 ) ⋅ ( j Ω ) ] e j Ω t d Ω = − 2 ⋅ 1 2 π ∫ − ∞ ∞ [ Y ( Ω ) ⋅ ( j Ω ) ] e j Ω t d Ω = − 2 d y ( t ) d t (3) \begin{aligned} tx(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}[-2\sin(\Omega^2)\cdot(j\Omega)]e^{j\Omega t}d\Omega\\ &=-2\cdot\frac{1}{2\pi}\int_{-\infty}^{\infty}[Y(\Omega)\cdot(j\Omega)]e^{j\Omega t}d\Omega\\ &=-2\frac{dy(t)}{dt} \tag{3} \end{aligned} tx(t)=2π1[2sin(Ω2)(jΩ)]ejΩtdΩ=22π1[Y(Ω)(jΩ)]ejΩtdΩ=2dtdy(t)(3)

同时重写 (1) 式可得
j d X ( Ω ) d Ω = − 2 j Ω Y ( Ω ) (4) j\frac{dX(\Omega)}{d\Omega} = -2j\Omega Y(\Omega)\tag{4} jdΩdX(Ω)=2jΩY(Ω)(4)

4.1.2 第二次微分

由于 sin ⁡ ( ⋅ ) \sin(\cdot) sin() cos ⁡ ( ⋅ ) \cos(\cdot) cos() 函数存在微分相关性,所以我们对 Y ( Ω ) Y(\Omega) Y(Ω) 进行微分。

首先对 Y ( Ω ) Y(\Omega) Y(Ω) 进行一次微分
j d Y ( Ω ) d Ω = 2 cos ⁡ ( Ω 2 ) ( j Ω ) = 2 j Ω X ( Ω ) (5) j\frac{dY(\Omega)}{d\Omega} = 2\cos(\Omega^2)(j\Omega)=2j\Omega X(\Omega) \tag{5} jdΩdY(Ω)=2cos(Ω2)(jΩ)=2jΩX(Ω)(5)
利用 “微分乘积对偶性” 可得
t y ( t ) = 2 d x ( t ) d t (6) ty(t)=2\frac{dx(t)}{dt}\tag{6} ty(t)=2dtdx(t)(6)

4.1.3 主项整理

4.1.3.1 频域

X ( Ω ) X(\Omega) X(Ω) 为主项,结合 (3) 式和 (6) 式可得
2 Ω X ( Ω ) = d d Ω ( Y ( Ω ) ) = d d Ω ( − 1 2 Ω d X ( Ω ) d Ω ) = − 1 2 ( − 1 Ω 2 d X ( Ω ) d Ω + 1 Ω d 2 X ( Ω ) d Ω 2 ) \begin{aligned} 2\Omega X(\Omega) &=\frac{d}{d\Omega}(Y(\Omega))\\ &=\frac{d}{d\Omega}\left(-\frac{1}{2\Omega}\frac{dX(\Omega)}{d\Omega}\right)\\ &=-\frac{1}{2}\left(-\frac{1}{\Omega^2}\frac{dX(\Omega)}{d\Omega}+\frac{1}{\Omega}\frac{d^2X(\Omega)}{d\Omega^2}\right) \end{aligned} 2ΩX(Ω)=dΩd(Y(Ω))=dΩd(2Ω1dΩdX(Ω))=21(Ω21dΩdX(Ω)+Ω1dΩ2d2X(Ω))

整理上式可得
Ω d 2 X ( Ω ) d Ω 2 − d X ( Ω ) d Ω + 4 Ω 3 X ( Ω ) = 0 (7) \Omega\frac{d^2X(\Omega)}{d\Omega^2}-\frac{dX(\Omega)}{d\Omega}+4\Omega^3X(\Omega) = 0 \tag{7} ΩdΩ2d2X(Ω)

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值