Schrödinger 方程的有限差分方法(笔记)

Schrödinger 方程的有限差分方法(笔记)

复值函数预备知识

u = u 1 + u 2 i u ˉ = u 1 − u 2 i u ⋅ u ˉ = u ˉ ⋅ u = u 1 2 + u 2 2 = ∣ u ∣ 2 ∣ u ∣ 1 2 = ∫ L ∣ u x ∣ 2 d x ∥ u ∥ 2 = ( u , u ) = ∫ L u ⋅ u ˉ d x = ∫ L ∣ u ∣ 2 d x . \begin{aligned} &u=u_{1}+u_{2} i\\ &\bar{u}=u_{1}-u_{2} i \\ &u \cdot \bar{u}=\bar{u} \cdot u=u_{1}^{2}+u_{2}^{2}=|u|^{2} \\ &|u|_{1}^{2}=\int_{L}\left|u_{x}\right|^{2} d x \\ &\|u\|^{2}=(u, u)=\int_{L} u \cdot \bar{u} d x=\int_{L}|u|^{2} d x . \end{aligned} u=u1+u2iuˉ=u1u2iuuˉ=uˉu=u12+u22=u2u12=Lux2dxu2=(u,u)=Luuˉdx=Lu2dx.

经典不等式

H o ¨ l d e r Hölder Ho¨lder 不等式(离散形式)
∑ i = 1 n a i b i ⩽ ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q \sum_{i=1}^{n} a_{i} b_{i} \leqslant\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}} i=1naibi(i=1naip)p1(i=1nbiq)q1
H o ¨ l d e r Hölder Ho¨lder 不等式(连续形式)
∫ Ω f ( x ) ⋅ g ( x ) d x ⩽ ( ∫ Ω ∣ f ( x ) ∣ p d x ) 1 p ⋅ ( ∫ Ω ∣ g ( x ) ∣ q d x ) 1 q \int_{\Omega} f(x) \cdot g(x) d x \leqslant\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{1}{p}} \cdot\left(\int_{\Omega}|g(x)|^{q} d x\right)^{\frac{1}{q}} Ωf(x)g(x)dx(Ωf(x)pdx)p1(Ωg(x)qdx)q1
柯西-斯瓦茨不等式
∣ ⟨ x , y ⟩ ∣ ⩽ ∥ x ∥ ⋅ ∥ y ∥ |\langle x, y\rangle| \leqslant\|x\| \cdot\|y\| x,yxy
其中 ⟨ x , y ⟩ \langle x, y\rangle x,y x x x y y y 的内积,   ∣ ∣ ⋅ ∣ ∣ \ \mid\mid \cdot\mid\mid   为内积导出范数.

引理

通过泰勒展开式建立差分格式的过程中, 不可避免的需要讨论余项 R j k R_{j}^{k} Rjk 的阶. 有时为了完成收敛性的证明, 还需要讨论余项的一阶差商 δ t R j k + 1 2 \delta_{t} R_{j}^{k+\frac{1}{2}} δtRjk+21 的阶.

例如: 在点 ( x j , t k + 1 2 ) \left(x_{j}, t_{k+\frac{1}{2}}\right) (xj,tk+21) 处考虑控制方程, 有
i u t ( x j , t k + 1 2 ) + u x x ( x j , t k + 1 2 ) + q ∣ u ( x j , t k + 1 2 ) ∣ 2 u ( x j , t k + 1 2 ) = 0 , 1 ⩽ j ⩽ m − 1 , 0 ⩽ k ⩽ n − 1. \begin{gathered} \mathrm{i} u_{t}\left(x_{j}, t_{k+\frac{1}{2}}\right)+u_{x x}\left(x_{j}, t_{k+\frac{1}{2}}\right)+q\left|u\left(x_{j}, t_{k+\frac{1}{2}}\right)\right|^{2} u\left(x_{j}, t_{k+\frac{1}{2}}\right)=0, \\ 1 \leqslant j \leqslant m-1, \quad 0 \leqslant k \leqslant n-1 . \end{gathered} iut(xj,tk+21)+uxx(xj,tk+21)+qu(xj,tk+21)2u(xj,tk+21)=0,1jm1,0kn1.
应用 Taylor 展开式及微分公式, 有
i δ t U j k + 1 2 + δ x 2 U j k + 1 2 + q 2 ( ∣ U j k ∣ 2 + ∣ U j k + 1 ∣ 2 ) U j k + 1 2 = R j k , 1 ⩽ j ⩽ m − 1 , 0 ⩽ k ⩽ n − 1 , \begin{array}{r} \mathrm{i} \delta_{t} U_{j}^{k+\frac{1}{2}}+\delta_{x}^{2} U_{j}^{k+\frac{1}{2}}+\frac{q}{2}\left(\left|U_{j}^{k}\right|^{2}+\left|U_{j}^{k+1}\right|^{2}\right) U_{j}^{k+\frac{1}{2}}=R_{j}^{k}, \\ 1 \leqslant j \leqslant m-1, \quad 0 \leqslant k \leqslant n-1, \end{array} iδtUjk+21+δx2Ujk+21+2q(Ujk2+Ujk+12)Ujk+21=Rjk,1jm1,0kn1,
且存在正常数 c 1 c_{1} c1 使得
∣ R j k ∣ ⩽ c 1 ( τ 2 + h 2 ) , 1 ⩽ j ⩽ m − 1 , 0 ⩽ k ⩽ n − 1 , ∣ δ t R j k + 1 2 ∣ ⩽ c 1 ( τ 2 + h 2 ) , 1 ⩽ j ⩽ m − 1 , 0 ⩽ k ⩽ n − 2. \begin{aligned} &\left|R_{j}^{k}\right| \leqslant c_{1}\left(\tau^{2}+h^{2}\right), \quad 1 \leqslant j \leqslant m-1,0 \leqslant k \leqslant n-1, \\ &\left|\delta_{t} R_{j}^{k+\frac{1}{2}}\right| \leqslant c_{1}\left(\tau^{2}+h^{2}\right), \quad 1 \leqslant j \leqslant m-1,0 \leqslant k \leqslant n-2 . \end{aligned} Rjkc1(τ2+h2),1jm1,0kn1,δtRjk+21c1(τ2+h2),1jm1,0kn2.

要得到余项一阶差商的阶, 需要用到带积分余项的 Taylor 展开式.


出于简明及通用性的考虑, 此处仅讨论空间方向 n n n 阶泰勒展开式的余项.

证明

首先给出在 x 0 x_0 x0 处的积分型余项、 拉格朗日型余项和柯西型余项, 它们分别是
R n ( x ) = 1 n ! ∫ x 0 x f ( n + 1 ) ( s ) ( x − s ) n d s R n ( x ) = 1 ( n + 1 ) ! f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 , ξ  在  x 0 与  x  之间 R n ( x ) = 1 n ! f ( n + 1 ) ( θ x ) ( 1 − θ ) n ( x − x 0 ) n + 1 , 0 ⩽ θ ⩽ 1 \begin{aligned} R_{n}(x)&=\frac{1}{n !} \int_{x_0}^{x} f^{(n+1)}(s)(x-s)^{n} ds\\ R_{n}(x)&=\frac{1}{(n+1) !} f^{(n+1)}(\xi) (x-x_0)^{n+1}, \quad \xi\ \text{在}\ x_0 \text{与}\ x\ \text{之间}\\ R_{n}(x)&=\frac{1}{n !} f^{(n+1)}(\theta x)(1-\theta)^{n} (x-x_0)^{n+1}, \quad 0 \leqslant \theta \leqslant 1 \end{aligned} Rn(x)Rn(x)Rn(x)=n!1x0xf(n+1)(s)(xs)nds=(n+1)!1f(n+1)(ξ)(xx0)n+1,ξ  x0 x 之间=n!1f(n+1)(θx)(1θ)n(xx0)n+1,0θ1
于是, 将 f ( x j + h ) f\left(x_{j}+h\right) f(xj+h) 在点 x j x_{j} xj 处展开同时 f ( x j + 2 h ) f\left(x_{j}+2h\right) f(xj+2h) 在点 x j + h x_{j}+h xj+h 处展开的积分型余项分别为
R j = 1 n ! ∫ x j x j + h f ( n + 1 ) ( s ′ ) ( x j + h − s ′ ) n d s ′ . 令  s ′ = s h + x j . R j + 1 = 1 n ! ∫ x j + h x j + 2 h f ( n + 1 ) ( s ′ ) ( x j + 2 h − s ′ ) n d s ′ . 令  s ′ = s h + x j + h . \begin{aligned} R_{j}&=\frac{1}{n !} \int_{x_{j}}^{x_{j}+h} f^{(n+1)}\left(s^{\prime}\right)\left(x_{j}+h-s^{\prime}\right)^{n} d s^{\prime} .\quad \text{令}\ s^{\prime}=s h+x_{j} .\\ R_{j+1}&=\frac{1}{n !} \int_{x_{j}+h}^{x_{j}+2 h} f^{(n+1)}\left(s^{\prime}\right)\left(x_{j}+2 h-s^{\prime}\right)^{n} d s^{\prime} . \quad \text{令}\ s^{\prime}=s h+x_{j}+h .\\ \end{aligned} RjRj+1=n!1xjxj+hf(n+1)(s)(xj+hs)nds. s=sh+xj.=n!1xj+hxj+2hf(n+1)(s)(xj+2hs)nds. s=sh+xj+h.
可得
R j = 1 n ! ∫ 0 1 f ( n + 1 ) ( s h + x j ) ( 1 − s ) n h n + 1 d s . R j + 1 = 1 n ! ∫ 0 1 f ( n + 1 ) ( s h + x j + h ) ( 1 − s ) n h n + 1 d s . \begin{aligned} R_{j}&=\frac{1}{n !} \int_{0}^{1} f^{(n+1)}\left(s h+x_{j}\right)(1-s)^{n} h^{n+1} d s .\\ R_{j+1}&=\frac{1}{n !} \int_{0}^{1} f^{(n+1)}\left(s h+x_{j}+h\right)(1-s)^{n} h^{n+1} d s. \end{aligned} RjRj+1=n!101f(n+1)(sh+xj)(1s)nhn+1ds.=n!101f(n+1)(sh+xj+h)(1s)nhn+1ds.
于是有
R i + 1 − R j = 1 n ! ∫ 0 1 [ f ( n + 1 ) ( s h + x j + h ) − f ( n + 1 ) ( s h + x j ) ] ( 1 − s ) n h n + 1 d s . (1) R_{i+1}-R_{j} =\frac{1}{n !} \int_{0}^{1}\left[f^{(n+1)}\left(s h+x_{j}+h\right)-f^{(n+1)}\left(s h+x_{j}\right)\right](1-s)^{n} h^{n+1} d s . \tag{1} Ri+1Rj=n!101[f(n+1)(sh+xj+h)f(n+1)(sh+xj)](1s)nhn+1ds.(1)
根据泰勒展式, 将 f ( n + 1 ) ( s h + x j + h ) f^{(n+1)}\left(s h+x_{j}+h\right) f(n+1)(sh+xj+h) 在点 s h + x j s h+x_{j} sh+xj 处展开得
f ( n + 1 ) ( s h + x j + h ) = f ( n + 1 ) ( s h + x j ) + h f ( n + 2 ) ( s h + x j ) + o ( h 2 ) f^{(n+1)}\left(s h+x_{j}+h\right)=f^{(n+1)}\left(s h+x_{j}\right)+hf^{(n+2)}\left(s h+x_{j}\right)+o\left(h^{2}\right) f(n+1)(sh+xj+h)=f(n+1)(sh+xj)+hf(n+2)(sh+xj)+o(h2)
移项得
f ( n + 1 ) ( s h + x j + h ) − f ( n + 1 ) ( s h + x j ) = h f ( n + 2 ) ( s h + x j ) + o ( h 2 ) (2) f^{(n+1)}\left(s h+x_{j}+h\right)-f^{(n+1)}\left(s h+x_{j}\right)=h f^{(n+2)}\left(s h+x_{j}\right)+o\left(h^{2}\right)\tag{2} f(n+1)(sh+xj+h)f(n+1)(sh+xj)=hf(n+2)(sh+xj)+o(h2)(2)
( 2 ) (2) (2) 带入 ( 1 ) (1) (1) 得到
R i + 1 − R j = 1 n ! ∫ 0 1 [ h f ( n + 2 ) ( s h + x j ) + o ( h 2 ) ] ( 1 − s ) n h n + 1 d s = 1 n ! ∫ 0 1 h f ( n + 2 ) ( s h + x j ) ( 1 − s ) n h n + 1 d s + 1 n ! ∫ 0 1 o ( h 2 ) ( 1 − s ) n h n + 1 d s = o ( h n + 2 ) + o ( h n + 3 ) = o ( h n + 2 ) . \begin{aligned} R_{i+1}-R_{j} &=\frac{1}{n !} \int_{0}^{1}\left[h f^{(n+2)}\left(s h+x_{j}\right)+o\left(h^{2}\right)\right](1-s)^{n} h^{n+1} d s \\ &=\frac{1}{n !} \int_{0}^{1}h f^{(n+2)}\left(s h+x_{j}\right)(1-s)^{n} h^{n+1} d s + \frac{1}{n !} \int_{0}^{1}o\left(h^{2}\right)(1-s)^{n} h^{n+1} d s \\ &=o\left(h^{n+2}\right)+o\left(h^{n+3}\right)\\ &=o\left(h^{n+2}\right) \end{aligned}. Ri+1Rj=n!101[hf(n+2)(sh+xj)+o(h2)](1s)nhn+1ds=n!101hf(n+2)(sh+xj)(1s)nhn+1ds+n!101o(h2)(1s)nhn+1ds=o(hn+2)+o(hn+3)=o(hn+2).
于是
δ x R j + 1 2 = R j + 1 − R j h = o ( h n + 2 ) h = o ( h n + 1 ) \delta_{x} R_{j+\frac{1}{2}}=\frac{R_{j+1}-R_{j}}{h}=\frac{o\left(h^{n+2}\right)}{h}=o\left(h^{n+1}\right) δxRj+21=hRj+1Rj=ho(hn+2)=o(hn+1)
综上所述, 余项与其一阶差商同阶.

证明完毕.

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REAdMe.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REAdMe.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看READme.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 、 1资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看READmE.文件(md如有),本项目仅用作交流学习参考,请切勿用于商业用途。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.图灵的猫.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值