神经网络案例编程实战

本文详细介绍了神经网络数据预处理中的归一化方法,以及BP神经网络的训练和测试过程。在训练前,数据通过归一化处理确保统一单位和加速收敛。BP网络训练涉及初始化、前向传播、误差反向传播和权值更新。测试阶段,通过训练和测试数据评估模型性能。在Matlab中,newff、train和sim函数用于网络创建、训练和仿真。实践表明,该方法适用于已知数据范围内的预测。

目录

一、数据预处理

二、BP神经网络的训练过程

三、BP神经网络的测试过程


一、数据预处理

       在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段就是归一化处理。下面简单介绍一下归一化处理的原理和方法。

(1)什么是归一化?

数据归一化就是把数据同等降低维度,比如说一组数据是[99,98,97,100],那么为了更好的效果,我们可以把这组数据归一化处理得到[0.99,0.98,0.97,1].

(2)为什么要归一化处理?

         a.输入数据的单位不一样,归一化处理后得到一个统一的单位

         b.有些数据的范围可能会特别大,导致的结果是神经网络收敛慢,从而导致训练时间变长

(3)归一化算法

一种简单而快速的归一化算法是线性转换算法。线性转换算法常见的有两种形式:

 &nb

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小羊不会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值