目录
一、数据预处理
在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段就是归一化处理。下面简单介绍一下归一化处理的原理和方法。
(1)什么是归一化?
数据归一化就是把数据同等降低维度,比如说一组数据是[99,98,97,100],那么为了更好的效果,我们可以把这组数据归一化处理得到[0.99,0.98,0.97,1].
(2)为什么要归一化处理?
a.输入数据的单位不一样,归一化处理后得到一个统一的单位
b.有些数据的范围可能会特别大,导致的结果是神经网络收敛慢,从而导致训练时间变长
(3)归一化算法
一种简单而快速的归一化算法是线性转换算法。线性转换算法常见的有两种形式:
&nb
本文详细介绍了神经网络数据预处理中的归一化方法,以及BP神经网络的训练和测试过程。在训练前,数据通过归一化处理确保统一单位和加速收敛。BP网络训练涉及初始化、前向传播、误差反向传播和权值更新。测试阶段,通过训练和测试数据评估模型性能。在Matlab中,newff、train和sim函数用于网络创建、训练和仿真。实践表明,该方法适用于已知数据范围内的预测。
订阅专栏 解锁全文
673

被折叠的 条评论
为什么被折叠?



