ps:要提前安装好Anaconda、pycharm、确保电脑有显卡
GPU安装开始:
1.下载CUDA
CUDA下载:https://developer.nvidia.com/cuda-toolkit-archive
进入官网选择一个电脑支持的版本(可以去pytorch官网看看提供哪些版本)
我刚刚去官网看了最新提供
CUDA 11.3的版本 那么我们就下载11.3的版本
下载好后开始安装 自定义安装 就一直下一步就好了
到这里注意一下就好了
等待完成就OK第一步了
2.下载CUDNN
CUDNN下载:https://developer.nvidia.com/rdp/cudnn-download
这里需要一个英伟达账号 直接注册一个 可以使用QQ邮箱注册
然后下载压缩包 要对应的版本或者高一些的版本
下载好后解压出来 把解压出来的文件重命名为 cudnn
复制到CUDA的安装路径中
然后配置环境变量
3.下载pytorch_GPU版本
打开
输入命令
先在Anaconda中建立一个虚拟环境 pytorch_gpu
conda create -n pytorch_gpu python=3.8
激活环境
activate pytorch_gpu
打开pytorch官网
复制命令行到控制台下载 等待一小会就OK
最后验证是否安装成功
在该环境下运行代码
import torch print(torch.__version__) # 查看torch当前版本号 print(torch.version.cuda) # 编译当前版本的torch使用的cuda版本号 print(torch.cuda.is_available()) # 查看当前cuda是否可用于当前版本的Torch,如果输出True,则表示可用
像这样就成功了