A星球有n座城市,编号从1到n,城市之间有m条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有q辆货车在运输货物,小明想知道每辆车在不超过车辆限重的情况下,最大的载重是多少。
Input
第一行两个整数n,m,表示有n座城市和m条道路,以空格隔开。 接下来m行每行三个整数x,y,z,表示从x号城市到y号城市有一条限重为z的道路。 其中x≠y,两座城市之间可能有多条道路 。 接下来一行有一个整数q,表示有q辆货车需要运货。 接下来q行,每行两个整数a,b,表示一辆货车需要从a城市运输货物到b城市,保证a≠b。
Output
共有q行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。
Sample
Input | Output |
---|---|
4 3 1 2 4 2 3 3 3 1 1 3 1 3 1 4 1 3 | 3 -1 3 |
题意: n座城市,m条双向道路,每条道路都有一个限重w,现在有q组询问,每组询问输出从城市a到城市b所有路径上最小边的最大值。
分析: 根据题目含义先分析出来最大载重就是从城市a到城市b所有路径上最小边的最大值,也就是a到b的最大瓶颈路,这个问题在最小瓶颈生成树中讲到过,求出图的最大生成树,从a到b的树链就是最大瓶颈路,也就是说每组询问需要返回树链上的最值。
树链上的最值问题可以借助最近公共祖先来解决,从a点到b点的树链可以被lca(a, b)分为两部分,一部分是从a到lca(a, b),另一部分是从b到lca(a, b)。在用树上倍增求fa数组时可以同时维护一个_min数组,_min[i][j]表示i点向上2^j层的路径上最小值,类似fa数组更新方式,_min数组更新式为_min[now][i] = min(_min[now][i-1], _min[fa[now][i-1]][i-1]),得到_min数组后考虑求lca的过程,首先让深度大的点爬到相同深度位置,这个过程可以借助_min数组得到路径上最小值,之后两点同时向上爬时同样可以借助_min数组得到路径上最小值,这都得益于_min和fa数组类似的含义。最后爬到lca下一层后别忘了还有两条边没被计算到,手动更新一下即可。
具体代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
#define inf 0x3f3f3f3f
using namespace std;
//从s到t的所有路径最小边的最大值,要求最大生成树
int head[10005], fa[10005][20], cnt, n, m, q, dep[10005], f[10005], _min[10005][20];
struct edge1
{
int to, next, w;
}e1[20005];
struct edge2
{
int u, v, w;
}e2[50005];
void add(int u, int v, int w)
{
e1[++cnt].to = v;
e1[cnt].w = w;
e1[cnt].next = head[u];
head[u] = cnt;
}
void dfs(int now, int pre)
{
dep[now] = dep[pre]+1;
fa[now][0] = pre;
for(int i = 1; i < 20; i++)
{
fa[now][i] = fa[fa[now][i-1]][i-1];
_min[now][i] = min(_min[now][i-1], _min[fa[now][i-1]][i-1]);
}
for(int i = head[now]; i; i = e1[i].next)
if(e1[i].to != pre)
{
_min[e1[i].to][0] = e1[i].w;
dfs(e1[i].to, now);
}
}
int lca(int x, int y, int &ans)
{
if(dep[x] < dep[y]) swap(x, y);
for(int i = 19; i >= 0; i--)
if(dep[fa[x][i]] >= dep[y])
{
ans = min(ans, _min[x][i]);
x = fa[x][i];
}
if(x == y) return x;
for(int i = 19; i >= 0; i--)
if(fa[x][i] != fa[y][i])
{
ans = min(ans, min(_min[x][i], _min[y][i]));
x = fa[x][i], y = fa[y][i];
}
ans = min(ans, min(_min[x][0], _min[y][0]));
return fa[x][0];
}
bool cmp(edge2 a, edge2 b)
{
return a.w > b.w;
}
int find(int x)
{
if(f[x] == x) return x;
return f[x] = find(f[x]);
}
signed main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++)
f[i] = i;
for(int i = 1; i <= m; i++)
scanf("%d%d%d", &e2[i].u, &e2[i].v, &e2[i].w);
sort(e2+1, e2+m+1, cmp);
for(int i = 1; i <= m; i++)
{
if(find(e2[i].u) != find(e2[i].v))
{
f[find(e2[i].u)] = find(e2[i].v);
add(e2[i].u, e2[i].v, e2[i].w);
add(e2[i].v, e2[i].u, e2[i].w);
}
}
for(int i = 0; i < 20; i++)
_min[0][i] = inf;
for(int i = 1; i <= n; i++)//对森林dfs
if(f[i] == i)
{
_min[i][0] = inf;
dfs(i, 0);
}
cin >> q;
for(int i = 1; i <= q; i++)
{
int x, y;
scanf("%d%d", &x, &y);
if(find(x) != find(y))
puts("-1");
else
{
int ans = inf;
lca(x, y, ans);
printf("%d\n", ans);
}
}
return 0;
}