sign-language-mnist神经网络搭建

获取数据集

26字母手势识别数据集.csv格式
提取码:jzyc

加载数据

import csv
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import cv2


# 获取数据
def get_data(file_name):
    with open(file_name) as f:
        csv_reader = csv.reader(f, delimiter=',')
        first_line = True # csv文件中第一行维标题行,不能载入数据
        temp_images = []
        temp_labels = []
        for row in csv_reader: 
            if first_line:
                first_line = False
                continue
            else:
                temp_labels.append(row[0])# csv文件中第一列为图片的label
                image_data = row[1 : 785]# 后面784列为图像每一个像素点对应的亮度值,读出来的是一个列表,需要将其划分为28*28的图像
                image_array = np.array_split(image_data, 28)
                temp_images.append(image_array)
        images = np.array(temp_images).astype('float')
        labels = np.array(temp_labels).astype('float')
    return images, labels

training_images, training_labels = get_data('E:/datasets/tmp/sign-language-mnist/sign_mnist_train.csv')
testing_images, testing_labels = get_data('E:/datasets/tmp/sign-language-mnist/sign_mnist_test.csv')
print(training_images.shape)
print(training_labels.shape)
print(testing_images.shape)
print(testing_labels.shape)

在这里插入图片描述

图像预处理

图像生成器,图像形态学操作

training_images = np.expand_dims(training_images, axis=3)
testing_images = np.expand_dims(testing_images, axis=3)
# 
train_datagen = ImageDataGenerator(
    rescale=1. 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值