不定积分部分总结

本文仅为鄙人复习笔记,浅显记录,如有错误望读者不啬赐教,鄙人将感激不尽!

不定积分概念

  • D e f   1 (原函数):设函数 f 与 F 的区间 I 上都有定义,且 F ′ ( x ) = f ( x ) , x ∈ I , 则称 F 为 f 在区间 I 上的一个原函数 Def\ 1(原函数):设函数f与F的区间I上都有定义,且F'(x)=f(x),x \in I, 则称F为f在区间I上的一个原函数 Def 1(原函数):设函数fF的区间I上都有定义,且F(x)=f(x)xI,则称Ff在区间I上的一个原函数

依定义与导数介值定理(达布定理)知,若 F ( x ) F(x) F(x)在定义域内处处可导,那么 F ′ ( x ) F'(x) F(x)连续,否则只可能含有有界的震荡间断点。
● 因而原函数可导,导函数连续或含有有界振荡点。
● 原函数可导,原函数连续(不要记混了 !!!

  • D e f   2 (不定积分):函数 f 在区间 I 上的全体原函数称为 f 在 I 上的不定积分,记作 ∫ f ( x )   d x Def\ 2(不定积分):函数f在区间I上的全体原函数称为f在I上的不定积分,记作\int f(x)\ dx Def 2(不定积分):函数f在区间I上的全体原函数称为fI上的不定积分,记作f(x) dx

不定积分描述的是总体和个体的关系,即若 F ( x ) F(x) F(x) f ( x ) f(x) f(x)的一个原函数,那么 f f f的不定积分是一个函数族 F + C {F+C} F+C C C C为任意常数,又称为积分常数

  • 不定积分的几何意义:若 F 是 f 的一个原函数,则称 f ( x ) 的图像为 f 的一条积分曲线。 f 的某一部分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族为其不定积分 不定积分的几何意义:若F是f的一个原函数,则称f(x)的图像为f的一条积分曲线。\\f的某一部分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族为其不定积分 不定积分的几何意义:若Ff的一个原函数,则称f(x)的图像为f的一条积分曲线。f的某一部分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族为其不定积分

一些性质总结

∫ a x f ( t )   d t \int_a^x f(t)\ dt axf(t) dt f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x)
不确定[ ∫ 0 x f ( t )   d t \int_0^x f(t)\ dt 0xf(t) dt是奇函数]
∫ 0 T f ( t )   d t = 0 那么周期为 T \int_0^T f(t)\ dt=0那么周期为T 0Tf(t) dt=0那么周期为T ( 简记 F ( 0 ) = F ( T ) = 0 简记F(0)=F(T)=0 简记F(0)=F(T)=0)周期是T周期是T

不定积分基本求法

换元积分

设函数 f ( x ) 在区间 I 上连续, φ ( t ) 在区间 J 上有连续的导函数,且 φ ( J ) ⊆ I . 设函数f(x)在区间I上连续,\varphi(t)在区间J上有连续的导函数,且\varphi (J)\subseteq I. 设函数f(x)在区间I上连续,φ(t)在区间J上有连续的导函数,且φ(J)I.

  • (i)  若在 I 上 ∫ f ( x )   d x = F ( x ) + C , 则在 J 上有 ∫ f ( φ ( x ) ) φ ′ ( x )   d t = F ( φ ( x ) ) + C \ 若在I上\int f(x)\ dx=F(x)+C,则在J上有\int f(\varphi (x))\varphi '(x)\ dt=F(\varphi(x))+C  若在If(x) dx=F(x)+C,则在J上有f(φ(x))φ(x) dt=F(φ(x))+C
  • (ii)  若 x = φ ( t ) 在 J 上存在反函数 t = φ − 1 ( x ) , x ∈ I ,且在 J 上 ∫ f ( φ ( t ) ) φ ′ ( t )   d t = G ( t ) + C ,则在 I 上有 ∫ f ( x ) d x = G ( φ − 1 ( x ) ) + C \ 若x=\varphi(t)在J上存在反函数t=\varphi^{-1}(x),x \in I,且在J上\int f(\varphi(t))\varphi'(t)\ dt=G(t)+C,则在I上有\int f(x)dx=G(\varphi^{-1}(x))+C  x=φ(t)J上存在反函数t=φ1(x),xI,且在Jf(φ(t))φ(t) dt=G(t)+C,则在I上有f(x)dx=G(φ1(x))+C

这两类换元法反映了正、逆两种换元方式,习惯上叫做第一换元积分法和第二换元积分法。
白话区别
● 第一类换元积分是凑微分
● 第二类换元积分是变量代换

换元积分的一些经验

  1. 三角类的换元
  2. 万能公式型换元
  3. 根式型换元, a x + b c x + d = > t \sqrt\frac{ax+b}{cx+d}=>t cx+dax+b =>t x 2 + p x + q = > x + p 2 = t   = > t 2 + r 2 \sqrt{x^2+px+q}=>x+\frac{p}{2}=t\ =>\sqrt{t^2+r^2} x2+px+q =>x+2p=t =>t2+r2
  4. 欧拉变换 a x 2 + b x + c = > a x ± t \sqrt{ax^2+bx+c}=>\sqrt ax\pm t ax2+bx+c =>a x±t or a x 2 + b x + c = > x t ± c \sqrt{ax^2+bx+c}=>xt\pm \sqrt c ax2+bx+c =>xt±c
  5. 换元常见项,简化计算 …

分部积分

由乘积的导数求法,不难想到分部积分法

  • 若 u ( x ) 与 v ( x ) 可导,不定积分 ∫ u ′ ( x ) v ( x )   d x 存在,则 ∫ u ( x ) v ′ ( x )   d x 也存在,并有 ∫ u   d v = u v − ∫ v   d u 若u(x)与v(x)可导,不定积分\int u'(x)v(x)\ dx存在,则\int u(x)v'(x)\ dx也存在,并有\\ \int u\ dv = uv-\int v\ du u(x)v(x)可导,不定积分u(x)v(x) dx存在,则u(x)v(x) dx也存在,并有u dv=uvv du

分部积分的一些思考(何时该用分部积分?)

  1. 分部积分有控制幂次的作用,通常意义上来说,积分升次求导降次,分部积分中一导一积保证总幂次不变
  2. 对于某些函数,他们的降次升次并不是通常意义上的幂数大小升降(可能他们原本就没有显式的幂数),例如 ln ⁡ x \ln x lnx,其“降次”后得到 1 x \frac{1}{x} x1,进而可以与幂函数作配合,而 e x , sin ⁡ x , cos ⁡ x e^x,\sin x,\cos x exsinxcosx等此类函数,他们的升降幂次反而是在趋向于本身或是自身的常数级放缩,因而会考虑多次分部积分后存在类似于“周期性的”现象
  3. 通过这种现象,我们首先能考虑到多次分部积分得到其本身,进而解出积分,例如: ∫ sec ⁡ 3 x   d x = ∫ sec ⁡ x   d ( t a n x ) = sec ⁡ x tan ⁡ x + ∫ sec ⁡ x   d x − ∫ sec ⁡ 3 x   d x \int \sec^3x\ dx=\int \sec x\ d(tanx)=\sec x\tan x+\int\sec x\ dx-\int \sec^3x\ dx sec3x dx=secx d(tanx)=secxtanx+secx dxsec3x dx
  4. 进而由上述说的这种周期性,再考虑到幂函数的幂指数升降效果,其实我们能够发现分部积分递推公式类型题目的一些端倪,一方面,利用一些函数求导、求积分的“周期性”,得到常数级的放缩,另一方面,通过幂函数等函数将幂指数进行更改,最后组合就得到了递推某一项的常数级放缩。下面举几个小例子。
    a. I n = ∫ tan ⁡ n x   d x , n = 2 , 3 , ⋯   , 则 I n = 1 n − 1 tan ⁡ n − 1 x − I n − 2 \quad I_n=\int \tan^n x\ dx,n=2,3,\cdots,则I_n=\frac{1}{n-1}\tan^{n-1}x-I_{n-2} In=tannx dx,n=2,3,,In=n11tann1xIn2
    b. I n = ∫ x n e k x d x , 则 I n = 1 k [ x n e k x − n I n − 1 ] \quad I_n=\int x^ne^{kx}dx,则I_n=\frac{1}{k}[x^ne^{kx}-nI_{n-1}] In=xnekxdx,In=k1[xnekxnIn1]
    c. I n = ∫ ( ln ⁡ x ) n d x , 则 I n = x ( ln ⁡ x ) n − n I n − 1 \quad I_n=\int (\ln x)^n dx,则I_n=x(\ln x)^n - nI_{n-1} In=(lnx)ndx,In=x(lnx)nnIn1
  5. 对于明确让我们去求递推公式的题目,思路比较好确定直接去积就可以了,但是在平常做题中,又怎么会有这么多含有n的强烈暗示的题目呢?通常比较多的是这种 ∫ x 3 e 2 x   d x 、 ∫ ( ln ⁡ x ) 3 d x 、 ∫ arcsin ⁡ 3 x   d x \int x^3e^{2x}\ dx、\int (\ln x)^3dx、\int \arcsin^3x\ dx x3e2x dx(lnx)3dxarcsin3x dx等等之类,甚至更多的是具有迷惑性的,让人无从下手,那么这时候,通过观察被积函数本身的一些性质,我们能有一条往分部积分上想的思路
  6. 当然,这只是笔者一家之言,没有经过大量规律验证,仅供参考罢了 ^ ^

有理函数积分

多项式函数不定积分

记有理函数的一般形式为 R ( x ) P ( x ) Q ( x ) = α 0 x n + α 1 x n − 1 + ⋯ + α n β 0 x n + β 1 x n − 1 + ⋯ + β n R(x)\frac{P(x)}{Q(x)}=\frac{\alpha_0x^n+\alpha_1x^{n-1}+\cdots+\alpha_n}{\beta_0x^n+\beta_1x^{n-1}+\cdots+\beta_n} R(x)Q(x)P(x)=β0xn+β1xn1++βnα0xn+α1xn1++αn

  1. 将有理函数 R ( x ) R(x) R(x)整理成 多项式 + 真分式多项式的形式,则多项式积分易求,下求真分式部分的积分
  2. 对真分式多项式作实数域内的标准分解转化成以下两种形式的积分
    a. ∫ d x ( x − a ) k \int \frac{dx}{(x-a)^k} (xa)kdx=> 直接动手积分
    b. ∫ L x + M ( x 2 + p x + q ) k d x \int \frac{Lx+M}{(x^2+px+q)^k}dx (x2+px+q)kLx+Mdx=> t = x + p 2 t=x+\frac{p}{2} t=x+2p=> 原式 = L ∫ t ( t 2 + r 2 ) k d t + N ∫ d t ( t 2 + r 2 ) k 原式=L\int \frac{t}{(t^2+r^2)^k}dt+N\int \frac{dt}{(t^2+r^2)^k} 原式=L(t2+r2)ktdt+N(t2+r2)kdt
    \quad i. 第一个不定积分凑微分直接积
    \quad ii. 第二个用分部积分得到递推公式 I k = t 2 r 2 ( k − 1 ) ( t 2 + r 2 ) k − 1 + 2 k − 3 2 r 2 ( k − 1 ) I k − 1 I_k=\frac{t}{2r^2(k-1)(t^2+r^2)^{k-1}}+\frac{2k-3}{2r^2(k-1)}I_{k-1} Ik=2r2(k1)(t2+r2)k1t+2r2(k1)2k3Ik1
    c. 结合两部分就得到了有理函数积分的一般求法
三角函数有理式不定积分

通过对三角函数有理式的换元变换,可以整理成多项式积分的问题

∫ R ( sin ⁡ x , cos ⁡ x )   d x \int R(\sin x, \cos x)\ dx R(sinx,cosx) dx是三角函数有理式的不定积分
通过万能公式,令 x = tan ⁡ x 2 x=\tan \frac{x}{2} x=tan2x,转化成有理函数的不定积分
=》 ∫ R ( 2 t 1 + t 2 , 1 − t 2 1 + t 2 ) 2 1 + t 2   d t \int R(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2} )\frac{2}{1+t^2} \ dt R(1+t22t,1+t21t2)1+t22 dt

注:当被积函数是 sin ⁡ 2 x , cos ⁡ 2 x \sin^2 x, \cos^2 x sin2x,cos2x sin ⁡ x , cos ⁡ x \sin x, \cos x sinx,cosx的有理式时,采用变换 t = tan ⁡ x t=\tan x t=tanx可能更为方便

某些无理根式不定积分
  1. ∫ R ( x , a x + b c x + d n )   d x \int R(x,\sqrt[n]{\frac{ax+b}{cx+d}})\ dx R(x,ncx+dax+b ) dx,作变换 t = a x + b c x + d n ( a d − b c ≠ 0 ) t=\sqrt[n]{\frac{ax+b}{cx+d}}(ad-bc \neq 0) t=ncx+dax+b (adbc=0)
  2. ∫ R ( x , a x 2 + b x + c )   d x \int R(x,\sqrt{ax^2+bx+c})\ dx R(x,ax2+bx+c ) dx,做变换 u = x + b 2 a , k 2 = ∣ 4 a c − b 2 4 a 2 ∣ u=x+\frac{b}{2a},k^2=|\frac{4ac-b^2}{4a^2}| u=x+2ab,k2=4a24acb2,因此原积分转化成下列两种积分
    a. ∫ R ( u , u 2 ± k 2   d u \int R(u,\sqrt{u^2 \pm k^2}\ du R(u,u2±k2  du
    b. ∫ R ( u , k 2 − x 2 )   d u \int R(u,\sqrt{k^2-x^2})\ du R(u,k2x2 ) du
    => 上述两种积分可以进而转化成三角有理式的不定积分

无法用初等函数表示原函数的积分式

请添加图片描述
请添加图片描述
请添加图片描述

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值