线性代数:相似矩阵

相似矩阵

此为笔者考研复习拙见,如有错误,望各位读者不惜笔墨不啬赐教,感激不尽!



一、特征值和特征向量

定义:设 A A A 为 n 阶矩阵,若 A α = λ α ( α ≠ 0 ) A\alpha=\lambda \alpha(\alpha\neq 0) Aα=λα(α=0) ,则称 λ \lambda λ A A A 的特征值, α \alpha α 是属于 λ \lambda λ 的特征向量( λ \lambda λ 对应的特征向量为 k 1 α 1 + ⋯ + k s α s k_1 \alpha_1 + \cdots +k_s\alpha_s k1α1++ksαs )

将该式变形可以得到 ( λ E − A ) α = 0 , α ≠ 0 (\lambda E-A)\alpha=0,\alpha \neq 0 (λEA)α=0,α=0 即齐次线性方程组 ( λ E − A ) α = 0 (\lambda E-A)\alpha=0 (λEA)α=0 有非零解

而行列式 ∣ λ E − A ∣ |\lambda E-A| λEA 也称为 A A A 的特征多项式, ∣ λ E − A ∣ = λ n − ∑ i = 1 n a i i λ n − 1 + ⋯ + ( − 1 ) n ∣ A ∣ |\lambda E-A|=\lambda^n-\sum_{i=1}^na_{ii}\lambda ^{n-1} + \cdots+(-1)^n|A| λEA=λni=1naiiλn1++(1)nA


求解特征值与特征向量

  1. 解方程 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0 或解方程组 ( λ E − A ) α = 0 (\lambda E-A)\alpha=0 (λEA)α=0
  2. 利用定义 A α = λ α A\alpha=\lambda \alpha Aα=λα (一般题目会给出多个向量间的关系,写成矩阵相乘利用相似更加方便)

特征值的性质

由特征多项式,结合韦达定理可以得到

  1. λ 1 + ⋯ + λ n = ∑ i = 1 n a i i = t r ( A ) \lambda_1+\cdots+\lambda_n=\sum_{i=1}^na_{ii}=\mathrm{tr}(A) λ1++λn=i=1naii=tr(A) 其中 t r ( A ) \mathrm{tr}(A) tr(A) 称为 A A A 的迹
  2. λ 1 λ 2 ⋯ λ n = ∣ A ∣ \lambda_1\lambda_2\cdots\lambda_n=|A| λ1λ2λn=A

特征向量的性质

  1. A A A 不同特征值对应的特征向量线性无关
  2. λ k \lambda_k λk A A A 的 k 重特征值,(k >= 1) 则属于 λ k \lambda_k λk 的线性无关的特征向量的个数不超过 k 个

二、相似矩阵

定义:设 A α i = λ i α i ( i = 1 , 2 , ⋯   , n ) A\alpha_i=\lambda_i\alpha_i(i=1,2,\cdots,n) Aαi=λiαi(i=1,2,,n) ,则

A ( α 1 , α 2 , ⋯   , α n ) = ( α 1 , α 2 , ⋯   , α n ) d i a g ( λ 1 , λ 2 , ⋯   , λ n ) A(\alpha_1,\alpha_2,\cdots,\alpha_n)=(\alpha_1,\alpha_2,\cdots,\alpha_n)\mathrm{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n) A(α1,α2,,αn)=(α1,α2,,αn)diag(λ1,λ2,,λn)

α 1 , ⋯   , α n \alpha_1, \cdots, \alpha_n α1,,αn 都线性无关时,即 P = ( α 1 , ⋯   , α n ) P=(\alpha_1,\cdots,\alpha_n) P=(α1,,αn) 可逆,记 Λ = d i a g ( λ 1 , ⋯   , λ n ) \Lambda=\mathrm{diag}(\lambda_1,\cdots,\lambda_n) Λ=diag(λ1,,λn) P − 1 A P = Λ ⇔ A ∼ Λ P^{-1}AP=\Lambda\Leftrightarrow A \sim \Lambda P1AP=ΛAΛ


A相似于对角阵的条件

  1. 充分条件: A A A 有 n 个不同的特征值
  2. 充要条件: A A A 有 n 个线性无关的特征向量
  3. 充要条件: A A A 的 k 重特征值对应 k 个线性无关的特征向量

相似定义:若存在可逆阵 P P P 使得 P − 1 A P = B P^{-1}AP=B P1AP=B 则称 A A A 相似于 B B B

特征值和特征向量的常用结论

下列 f f f 为多项式函数,结论均可用定义验证

矩阵 A A A A n A^n An A + k E A+kE A+kE f ( A ) f(A) f(A) A − 1 A^{-1} A1 A ∗ A^* A P − 1 A P P^{-1}AP P1AP A T A^T AT
特征值 λ \lambda λ λ n \lambda^n λn λ + k \lambda + k λ+k f ( λ ) f(\lambda) f(λ) λ − 1 \lambda^{-1} λ1 ∣ A ∣ λ \frac{|A|} \lambda λA λ \lambda λ λ \lambda λ
特征向量 α \alpha α α \alpha α α \alpha α α \alpha α α \alpha α α \alpha α P − 1 α P^{-1}\alpha P1α/

相似阵的性质

  1. A T ∼ B T A^T\sim B^T ATBT
  2. A n ∼ B n A^n\sim B^n AnBn
  3. f ( A ) ∼ f ( B ) f(A)\sim f(B) f(A)f(B) 其中 f f f 是多项式函数
  4. A A A 可逆时, A − 1 ∼ B − 1 A^{-1}\sim B^{-1} A1B1 A ∗ ∼ B ∗ A^*\sim B^* AB
  5. A ∼ B ⇒ ∣ λ E − A ∣ = ∣ λ E − B ∣ A\sim B \Rightarrow |\lambda E -A|=|\lambda E - B| ABλEA=λEB (相似阵特征值相同,特征值相同矩阵不一定相似)

三、实对称矩阵

定义 A A A 是 n 阶实矩阵,且 A T = A A^T=A AT=A 则称 A A A 为实对称矩阵


实对称矩阵的对角化

  1. 实对称矩阵必相似于对角阵
  2. 实对称矩阵可以用正交阵对角化
  3. 实对称阵不同特征值的特征向量相互正交
  4. 实对称的特征值必为实数

实对称矩阵利用正交阵对角化

  1. A A A 的特征值
  2. A A A 的特征向量
  3. A A A 存在多重特征向量,则对该多重进行施密特正交化
  4. 对所有特征向量做单位化
  5. 依对应特征值顺序组成正交阵 Q Q Q ,有 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ

四、相似阵确定参数

确定参数的一般情况

  1. A n × n ∼ B n × n ⇒ { ∣ A ∣ = ∣ B ∣ , t r ( A ) = t r ( B ) A_{n\times n}\sim B_{n\times n}\Rightarrow \left\{ \begin{aligned}&|A|=|B|,\\ &\mathrm{tr}(A)=\mathrm{tr}(B) \end{aligned}\right. An×nBn×n{A=B,tr(A)=tr(B)
  2. 已知 λ 0 \lambda_0 λ0 A A A 的一个特征值,则 ∣ λ 0 E − A ∣ = 0 |\lambda_0E-A|=0 λ0EA=0
  3. α 0 \alpha_0 α0 A A A 的一个特征向量,则 A α 0 = λ α 0 A\alpha_0=\lambda \alpha_0 Aα0=λα0 (解方程组)
  4. 对 n 阶矩阵 A A A r ( A ) < n ⇒ ∣ A ∣ = 0 \mathrm r(A)<n\Rightarrow |A|=0 r(A)<nA=0 (常用方法)
  5. ∣ λ E − A ∣ = ∣ λ E − B ∣ |\lambda E-A|=|\lambda E-B| λEA=λEB A A A B B B 都是实对称矩阵,则 A ∼ B A\sim B AB

矩阵相似的必要条件

A ∼ B ⇒ { ∣ A ∣ = ∣ B ∣ , t r ( A ) = t r ( B ) , r ( A ) = r ( B ) , ∣ λ E − A ∣ = ∣ λ E − B ∣ , A 、 B 有相同的特征值且对应重数一致 A\sim B\Rightarrow\left\{\begin{aligned}&|A|=|B|,\\&\mathrm{tr}(A)=\mathrm{tr}(B),\\&\mathrm{r}(A)=\mathrm{r}(B),\\&|\lambda E-A|=|\lambda E-B|,\\&A、B有相同的特征值且对应重数一致 \end{aligned}\right. AB A=B,tr(A)=tr(B),r(A)=r(B),λEA=λEB,AB有相同的特征值且对应重数一致

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值