【flux教程】玩转FLUX-tools模型,Fill和Redux功能解析和使用心得

大家好,这两天都在玩黑森林团推最新推出的FLUX-tools模型吧。在使用过程中,大家应该有不少心得和体会吧。欢迎大家来和我一起分享交流心得和体会。

总体来说,我觉得FLUX-tools模型中的Fill模型和Redux模型表现相对要出色。

接下来,我先给大家简单介绍一下这个两个模型的安装以及工作流的使用。注意哦!这两个模型的放置位置是不一样的!我们先看网址:

模型下载后,放入models/unet目录下


模型下载后,放入models/style_models目录下

我们来看下老金比较喜欢的Fill模型的表现,它根据实现的方式不同共有两套工作流,我们先来看下图像重绘(inpaiting)的工作流

我们可以从这个工作流可以看到,Fill模型非常准确地根据提示词的内容把原图的白色裙子修改成了粉色T恤,而且生成的图像风格与原图像一致。

这里,老金又测了一下guidance的数值的变化对最终画像的影响,从左到右,分别为3、15、30、45,

下面,我们再来看下真人图像的表现

我们可以看到Fill模型与之前的两个canny、depth模型一样,guidance值需要大于30。而且Fill模型的图像重绘,无论是真人还是动漫人物的表现还是中规中矩的,基本准确理解提示词,并能够正确实现。

接下来,老金要介绍的Fill模型的扩图功能(ouppainting),也是老金觉得是这个模型的亮点!我们先来看下工作流

光看工作流,可能还没什么感觉,我再给大家看下扩图后与原图的比较

我们可以看到,Fill模型非常准确地识别出图像中的人物、背景,并准确地分别实现人物和背景的再创作,毫无违和感,再也不用为难看的接缝而烦恼咯!这个要比之前老金所使用的各种扩图工作流要好很多。如果,有同学之前也使用过扩图工作流的,肯定深有感触。

之前使用扩图工作流非常繁琐,先要反推原图,然后蒙版生图,再要处理接缝,还要统一图像色彩。总之,林林总总一大堆节点处理。

而现在简单咯,只需要在提示词里写“beautiful scenery”,或这什么都不写,Fill模型都可以准确地识别原图中的元素,并发挥想象,生成令人满意的图片。

Fill模型介绍完了,老金再给大家介绍一下Redux模型

要正确使用Redux模型,还需要下载一个clip模型,网址如下:

https://huggingface.co/Comfy-Org/sigclip_vision_384/tree/main

模型下载后,放入models/clip_vision目录下

然后看下工作流

根据这个模型的介绍,它是一个类似ipadapter的风格转移模型。但是,老金觉得它更像是一个训练到一半的模型,Redux模型只是实现了把多个图片内容融合在一起,但没有考虑类似比列,语义方面的问题。

我们看下通过Redux模型生成的图像

如果要使用Redux模型正确出图,根据出图的表现,老金给出的建议:

要在多张图片中,先确定一个主体,然后其他的图片只保留你所要添加的内容,其余背景之类的都要去除。类似下图

总的来说,黑森林团队还是为了丰富FLUX的生态跨出了一步,期待,后续希望他们能够逐步完善这些工具。

需要的同学请点击下面链接,并转存文件,谢谢了

👇👇👇👇👇👇👇👇👇👇👇

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 解决 Flux 填充值后重新连接的方法 当使用 InfluxDB 的 Flux 查询语言执行 `fill` 操作来处理缺失的数据点时,如果希望在填充操作完成后重新建立查询连接或确保数据流不断开,可以采取以下措施: #### 1. 使用持续查询 (Continuous Queries) 对于频繁更新的数据集,在 InfluxDB 中设置持续查询可以帮助自动定期运行指定的查询语句并保存结果到新的测量中。这能间接实现即使在网络中断或其他异常情况下也能保持最新的聚合视图。 然而需要注意的是,InfluxDB v2.x 版本已经移除了对 CQ 的支持,取而代之推荐使用任务(Task)功能[^2]。 ```javascript // 创建一个周期性的任务用于执行带有 fill() 函数的 flux 脚本并将结果存入目标 bucket import "influxdata/influxdb" option task = {name: "myTask", every: 1h} from(bucket:"sourceBucket") |> range(start:-24h) |> filter(fn:(r) => r._measurement == "exampleMeasurement") |> aggregateWindow(every: 10m, fn: mean, createEmpty: true) |> yield(name: "_result") |> to(bucket:"destinationBucket") // 将结果写回到数据库中另一个bucket内 ``` #### 2. 实现客户端重试机制 为了应对临时性网络错误导致的断连情况,可以在应用程序层面加入合理的超时设定以及指数退避算法指导下的重试逻辑。这样即便遇到短暂的服务不可达也能够平滑恢复服务调用链路而不影响最终用户体验。 ```python def fetch_data_with_retry(url, retries=3): import requests from time import sleep attempt = 0 while True: try: response = requests.get(url=url).json() break except Exception as e: print(f"Error occurred during request: {e}") if attempt >= retries - 1: raise SystemExit("Max retry attempts reached.") wait_time = min(2 ** attempt, 32) # Exponential backoff with max delay of 32 seconds. sleep(wait_time) attempt += 1 return response['results'] ``` #### 3. 利用 WebSocket 长链接特性 考虑到某些场景下可能需要更实时地获取最新数据变化通知,则可考虑采用 WebSockets 协议代替传统的 HTTP API 请求方式与 InfluxDB 进行交互。WebSocket 提供了一种全双工通信信道使得服务器端一旦有新事件发生即可立即推送给前端展示层从而减少轮询带来的延迟问题。 不过目前官方并没有直接提供基于 WS/WSs 的 SDK 支持,因此开发者需自行封装相应协议格式并通过自定义 endpoint 来达成目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值