精准控制,效果惊艳!FLUX-Fill与Redux工作流打造完美图片合成

今天,老金给大家介绍一个利用最新的FLUX-Fill模型与FLUX-Redux模型相结合,进行图片合成的工作流。
这个图片合成工作流也是In-Context-LoRA生态系统圈作者在C站分享的一个工作流,我们先来看下这个工作流的网址:

https://civitai.com/models/933018?modelVersionId=1110698

再来看下它的工作流:

img

最后来看下最后出片的效果

img

不错吧,控制得相当好!

接下来,作者就带大家来安装这个工作流所需要的插件,有点多!

涉及到的节点插件有:ComfyUl-lmpact-Pack、comfyui-mixlab-nodes、ComfyUI_Comfyroll_CustomNodes、was-node-suite-comfyui、ComfyUI_essentials、ComfyUI-Easy-Use、ComfyUI-KJNodes、Comfyui-In-Context-Lora-Utils。

作者的原始工作流中还有一个Comfyui-art-venture节点,由于在安装中出现节点与节点依赖之间出现冲突,然后,把这个节点给舍弃咯,不影响整体出图。

这么多节点中有两个节点给大家介绍一下,一个是ComfyUl-lmpact-Pack,这个节点老金建议大家直接从comfyui-manager中直接安装,因为,手动安装了多次都不成功,还是看了作者issue中的建议,直接从comfyui-manager中搜索ComfyUl-lmpact-Pack,才安装成功的img

还有一个就是Comfyui-In-Context-Lora-Utils节点,github网址如下:

https://github.com/lrzjason/Comfyui-In-Context-Lora-Utils

这个节点更简单,直接下载一下网址的插件包:

https://github.com/lrzjason/Comfyui-In-Context-Lora-Utils/archive/refs/heads/main.zip

下载后解压后放入custom_nodes目录下即可

img

这个节点主要是用于定义和合成图片重绘MASK、场景MASK,让FLUX-Fill模与FLUX-Redux这两个模型清晰地知道重绘的位置。

其它的节点大多都是一些常用的节点,在老金往期中都有过介绍,一路走来的网友应该都已安装咯!没有安装过的同学也不要着急,老金给大家做了一个一键压缩包,解压就能直接运行,需要的请文末自取。

老金试了下,效果还是不错的,有没有时尚的赶脚img

img

有了这个工具,马上又想到一个组合,大家看看怎么样啊?img

img

这里为了帮助大家更好地掌握 ComfyUI,分享一套字节大佬整理的ComfyUI工作流集合,其包含了很多好玩有趣,但又有点复杂的工作流节点和json配置。

涵盖了 Stable Scascade、3D、LLM+SD、Portrait Master、SVD 等相关类别的工作流,共计15个类目38项工作流。这些都放在了下方卡片,需要的点击免费获取:

img

对于初学者来说,最佳的学习方法是以这些现成的工作流为模板,一步步地复刻并理解它们。

通过观察和分析别人的工作流,你可以学习到各种节点搭建的技巧和方法。随着理解的深入,你将能够根据自己的需求创新和搭建属于自己的工作流。

希望本文能帮助你有效地提升你的设计效率和创造力。

对于从来没有接触过AI绘画的同学,我已经帮你们准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

img

这份完整版的AI绘画资料和SD整合包已经打包好了,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

### Flux1-Fill-Dev-FP16-Q4 工作流概述 Flux1-Fill-Dev-FP16-Q4 是一种基于 GGUF 的量化工作流,旨在优化 GPU 显存占用的同时保持较高的推理性能[^1]。该工作流适用于低显存设备(如 6GB 或更低),通过 FP16 Q4_0/Q4_1 等量化的组合来减少内存消耗并提升运行效率。 以下是关于此工作流的配置、实现及相关文档的具体说明: --- ### 配置指南 #### 下载安装 要使用 Flux1-Fill-Dev-FP16-Q4 工作流,需先完成以下准备工作: 1. **下载工具链**:访问资源站点获取最新的 Flux-GGUF 版本及其配套脚本文件。 2. **环境设置**:确保 Python 及 PyTorch 安装完毕,并验证 CUDA 是否支持当前硬件架构[^4]。 ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 3. **模型加载**:根据需求选择已预训练好的 GGUF 模型权重文件,或者自行转换原始模型至目标格式[^3]。 --- ### 实现细节 #### 数据处理流程 数据输入阶段涉及像裁剪、缩放及标准化操作,具体代码如下所示: ```python from PIL import Image import numpy as np def preprocess_image(image_path, target_size=(512, 512)): img = Image.open(image_path).convert('RGB') img_resized = img.resize(target_size, resample=Image.BILINEAR) img_array = np.array(img_resized) / 255.0 return img_array.transpose(2, 0, 1)[np.newaxis].astype(np.float16) input_tensor = preprocess_image("example.jpg") print(input_tensor.shape) # 输出应为 (1, 3, 512, 512) ``` 上述函数实现了从图片到张量形式的数据准备过程。 #### 推理执行 利用 Quantization 技术降低计算复杂度,在实际调用时可参考以下模板: ```python import torch class InferenceModel(torch.nn.Module): def __init__(self, model_weights="model.gguf"): super().__init__() self.model = torch.jit.load(model_weights) @torch.no_grad() def forward(self, input_data): output = self.model(input_data.half()) return output.cpu().numpy() inference_engine = InferenceModel() result = inference_engine(torch.tensor(input_tensor)) print(result.shape) # 应返回预测结果维度信息 ``` 以上片段展示了如何加载量化后的模型并通过半精度浮点数加速推断速度。 --- ### 常见问题排查 | 错误描述 | 解决方案 | |----------|-----------| | `CUDA out of memory` | 减少批量大小或将部分层卸载回 CPU 运行 | | 输入尺寸不匹配 | 调整预处理器中的分辨率参数以适配网络预期输入形状[^2] | 对于更复杂的错误日志分析,则建议查阅官方论坛或社区贡献者维护的知识库链接。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值