笔记Yolov5 (4-Mosaic/9-Mosaic)

Yolov5的数据增强策略主要在hyp.scratch-low/med/high.yaml文件中配置,关闭mosaic增强可将相应参数设为0。源码中存在4-mosaic和9-mosaic两种增强方式,默认使用4-mosaic。若要切换到9-mosaic,需在utils/datasets.py中将load_mosaic9()替换为load_mosaic()并注释原有load_mosaic(),其余设置保持不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov5有关数据增强的参数都写到了data/hyps/hyp.scratch-low/med/high.yaml文件里,如果想关闭mosaic数据增强就直接可以把mosaic的参数设置为0

但是在Yolov5源码中有两种mosaic数据增强代码,一个是4-mosaic数据增强,另一个是9-mosaic数据增强,默认用的是4-mosaic数据增强,如果想换成9-mosaic数据增强可以将utils/datasets.py文件中的load_mosaic9()改成load_mosaic(),然后将原本的load_mosaic()注释掉,其他不变

reference

Yolo v5 (v6.1)数据增强方式解析_迪菲赫尔曼的博客-CSDN博客

Mosaic-9是一种数据增强算法,用于计算机视觉任务,特别是目标检测语义分割。它通过将图像中的不同对象或不同区域组合在一起,生成新的合成图像,从而增加数据多样性并提高模型性能。 Mosaic-9数据增强算法的主要步骤包括: 1. 生成合成图像:算法将图像划分为多个小块或“mosaics”,然后将这些小块随机组合成新的合成图像。这些小块可以是不同对象或不同区域的图像块,也可以是来自同一对象的不同视角或不同光照条件下的图像块。 2. 随机重采样:在生成合成图像时,算法会随机重采样这些小块,以调整它们的大小位置,以更好地适应新的合成图像。 3. 对象分割:在生成合成图像后,算法会根据任务的需求,将图像中的不同对象或区域进行分割标记。这可以帮助模型更好地理解不同对象之间的关系空间布局。 Mosaic-9数据增强算法的优点在于它能够提供更多的数据多样性,从而提高模型的泛化能力性能。通过将不同的图像块组合在一起,生成新的合成图像,该算法可以引入新的视角、光照条件背景信息,从而使模型能够更好地适应各种不同的实际场景。此外,该算法还可以通过对图像进行随机重采样对象分割,进一步增强数据的多样性。 总的来说,Mosaic-9数据增强算法是一种非常有效的数据增强方法,适用于计算机视觉任务中的目标检测语义分割等任务。它能够提供更多的数据多样性,提高模型的性能泛化能力,从而有助于提高模型的准确性可靠性。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值