大模型的6大核心技术(一)Transformer

一、Transformer

Transformer模型作为大型语言模型的基石, 引领了深度学习的新篇章。在早期,循环神经网络(RNN)是处理序列数据的主流手段。虽然RNN及其变体在某些任务中表现出色,但面对长序列时,它们常常陷入梯度消失和模型退化的困境。为了解决这一难题,Transformer模型应运而生。

随后在2020年OpenAI提出了著名的 “规模定律”,揭示了模型性能与参数量、数据量、训练时长之间的指数级增长关系,并指出这种提升与架构和优化超参数的依赖度相对较低。这一发现促使研究人员开始将重心转向大型语言模型基座,并开展了广泛的研究。基于Transformer的GPT、Bert等大模型在自然语言处理领域取得了令人瞩目的成就, 包括文本生成、机器翻译、问答等。它们不仅在大量样本情况下表现卓越,更展示了在零样本和少样本情况下的强大泛化能力,为人工智能的发展注入了新的活力。

模型原理:

Transformer模型由编码器和解码器组成,每部分由多个相同结构的“层”堆叠而成。这些层结合自注意力子层和线性前馈神经网络子层。自注意力子层使用点积注意力机制为每个输入序列位置生成独特表示,而线性前馈神经网络子层基于自注意力层的输出生成信息丰富的表示。编码器和解码器都包含一个位置编码层,用于捕捉序列中的位置信息。

模型训练:

Transformer模型的训练依赖于反向传播和优化算法(如随机梯度下降)。通过计算损失函数对权重的梯度,并使用优化算法调整这些权重,以最小化损失。为提高训练速度和模型泛化能力,常采用正则化技术和集成学习策略。

优点:

  1. 解决梯度消失和模型退化问题:Transformer模型的自注意力机制使其能够捕捉序列中的长期依赖关系。

  2. 并行计算能力强:模型架构支持并行计算,适用于GPU加速训练和推断。

  3. 多任务表现卓越:Transformer模型在机器翻译、文本分类和语音识别等任务中表现优秀。

缺点:

  1. 计算资源需求高:由于并行计算需求,训练和推断需要大量计算资源。

  2. 对初始权重敏感:模型对初始化权重敏感,可能导致训练不稳定或过拟合。

  3. 处理超长序列受限:尽管解决了梯度消失问题,但在处理超长序列时仍面临挑战。

应用场景:

Transformer模型广泛应用于自然语言处理领域,如机器翻译、文本分类和文本生成。此外,还在图像识别和语音识别等领域取得显著成果。

Python示例代码(简化版)


import torch
import torch.nn as nn
import torch.optim as optim
#该示例仅用于说明Transformer的基本结构和原理。实际的Transformer模型(如GPT或BERT)要复杂得多,并且需要更多的预处理步骤,如分词、填充、掩码等。
class Transformer(nn.Module):
   def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward=2048):
       super(Transformer, self).__init__()
       self.model_type = 'Transformer'
       # encoder layers
       self.src_mask = None
       self.pos_encoder = PositionalEncoding(d_model, max_len=5000)
       encoder_layers = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward)
       self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_encoder_layers)
       # decoder layers
       decoder_layers = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward)
       self.transformer_decoder = nn.TransformerDecoder(decoder_layers, num_decoder_layers)
       # decoder
       self.decoder = nn.Linear(d_model, d_model)
       self.init_weights()
   def init_weights(self):
       initrange = 0.1
       self.decoder.weight.data.uniform_(-initrange, initrange)
   def forward(self, src, tgt, teacher_forcing_ratio=0.5):
       batch_size = tgt.size(0)
       tgt_len = tgt.size(1)
       tgt_vocab_size = self.decoder.out_features
       # forward pass through encoder
       src = self.pos_encoder(src)
       output = self.transformer_encoder(src)
       # prepare decoder input with teacher forcing
       target_input = tgt[:, :-1].contiguous()
       target_input = target_input.view(batch_size * tgt_len, -1)
       target_input = torch.autograd.Variable(target_input)
       # forward pass through decoder
       output2 = self.transformer_decoder(target_input, output)
       output2 = output2.view(batch_size, tgt_len, -1)
       # generate predictions
       prediction = self.decoder(output2)
       prediction = prediction.view(batch_size * tgt_len, tgt_vocab_size)
       return prediction[:, -1], prediction
class PositionalEncoding(nn.Module):
   def __init__(self, d_model, max_len=5000):
       super(PositionalEncoding, self).__init__()
       # Compute the positional encodings once in log space.
       pe = torch.zeros(max_len, d_model)
       position = torch.arange(0, max_len).unsqueeze(1).float()
       div_term = torch.exp(torch.arange(0, d_model, 2).float() *
                            -(torch.log(torch.tensor(10000.0)) / d_model))
       pe[:, 0::2] = torch.sin(position * div_term)
       pe[:, 1::2] = torch.cos(position * div_term)
       pe = pe.unsqueeze(0)
       self.register_buffer('pe', pe)
   def forward(self, x):
       x = x + self.pe[:, :x.size(1)]
       return x
# 超参数
d_model = 512
nhead = 8
num_encoder_layers = 6
num_decoder_layers = 6
dim_feedforward = 2048
# 实例化模型
model = Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward)
# 随机生成数据
src = torch.randn(10, 32, 512)
tgt = torch.randn(10, 32, 512)
# 前向传播
prediction, predictions = model(src, tgt)
print(prediction)

最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值