尽管大型语言模型在直接推理任务中表现优异,但在处理
复杂
的多步推理
时常常遇到困难。这些困难主要源于自然语言中实体间复杂的关系以及语言表达的多样性。为了解决这些问题,本文提出了一种结构引导提示(Structure Guided Prompt)框架
,该框架能够将非结构化
文本转化为图结构
数据,并指导LLMs通过特定策略导航图形以完成多步推理。实验结果证明,这一框架显著提升了LLMs的推理能力,使其在更广泛的自然语言场景中表现出色。
研究难点
-
实体关系复杂:自然语言中实体之间的关系非常复杂,这使得在较长的文本中保持清晰的推理链变得困难。
-
语言表达多样性:同一实体和关系可以用不同的术语和结构来表达,这增加了识别和建立信息之间联系的难度。
-
信息筛选挑战:大型语言模型(LLMs)在识别相关信息和忽略不相关信息方面存在挑战。
-
逻辑连接缺失:多步推理需要逻辑连接信息,但自然语言中往往缺乏显式的逻辑连接词,增加了构建准确推理路径的难度。
相关工作
-
链式思维(Chain of Thought, CoT):一种通过逐步推理来改善LLMs的多步推理能力方法。
-
零样本链式思维(Zero-shot Chain of Thought, 0-CoT):在没有额外训练的情况下,通过逐步推理来提升LLMs的多步推理能力。
-
结合经典逻辑推理算法:将LLMs与传统逻辑推理算法结合,以增强其推理能力。
-
利用知识图谱(Knowledge Graphs, KGs):通过引入知识图谱,为LLMs提供结构化的知识背景,从而增强其推理能力。
一、快速了解SGP框架
结构引导提示(Structure Guided Prompt)是一种新颖的零样本提示框架,旨在通过探索文本的图结构来提高LLMs的多步推理能力,用于解决LLMs在多步推理任务中的表现不佳问题。
1. SGP框架是如何将非结构化文本转换为Graph的?
结构引导提示框架通过三个阶段将非结构化文本转换为Graph。
-
第一个阶段是
图构建
:通过LLMs将非结构化文本分段,从给定的段落中提取事实并构建一个图,其中每个节点对应一个实体,边表示实体之间的关系。例如,在一个故事中,可以将“李明”和“珍妮”分别作为节点,并通过“朋友”这样的关系连接起来。 -
第二个阶段是
任务特定的规划
:根据任务类型,规划如何在图中导航以回答问题。规划策略是任务特定的,例如在关系预测任务中,通过追溯节点之间的路径来推断缺失的关系。 -
最后一个阶段是
执行计划
:通过制定的计划遍历图来找到答案。每一步都基于前一步的结果,逐步缩小范围,直到找到最终的答案。
2. SGP框架支持哪些任务类型的处理?
SGP框架在多种类型的任务中都表现出色,包括关系预测
、动态KG中的实体预测
、复杂实体预测
、图排序
、图查询
和逻辑推理
等。
-
关系预测: 在CLUTRR数据集上,结构引导提示框架显著提高了LLMs的性能,尤其是在关系路径较长的情况下,性能下降较少。
-
动态KG中的实体预测: 在BIG-bench-hard数据集的跟踪打乱对象任务中,结构引导提示框架相比0-CoT提高了146%的性能,显示出在动态KG中进行多步推理的显著优势。
-
复杂实体预测: 在HotpotQA数据集的桥接问题中,结构引导提示框架也提高了性能,但由于段落过长,提升幅度不如其他任务显著。
-
图排序: 在BIG-bench-hard数据集的逻辑推理任务中,结构引导提示框架进一步提高了性能,特别是在涉及的对象数量增加时。
-
图查询: 在BIG-bench-hard数据集的颜色对象和企鹅表中,结构引导提示框架也提高了性能,进一步证明了其在复杂查询中的有效性。
-
逻辑推理: 在Entailment Bank数据集中,结构引导提示框架并未一致提高性能,主要挑战在于逻辑推理需要精确的顺序构建逻辑图。
3. 动态知识图谱(Dynamic KG)中的实体预测任务上,如何提高LLMs的性能?
假设有一个故事,讲的是几个朋友交换礼物。每次交换都会改变谁拥有哪个礼物。结构引导提示框架通过以下步骤帮助大型语言模型(LLMs)更好地理解和预测这些变化:
-
提取事实:从故事中提取关键信息,比如“小明把书给了小红”。
-
构建知识图谱:根据提取的事实,构建一个初始的知识图谱,记录每个人拥有的礼物。例如,开始时小明有一本书,小红有一个玩具。
-
更新知识图谱:每当故事中发生一次交换,就更新知识图谱。例如,小明把书给了小红后,知识图谱显示小红现在有两样东西:书和玩具,而小明没有东西。
-
评估正确性:在每个时间点,检查知识图谱是否正确反映了故事中的变化。例如,确认小明确实不再有书,小红确实有了书。
-
最终预测:在故事结束时,根据更新后的知识图谱,确定每个人最终拥有的礼物。
通过这种方式,LLMs能够逐步跟踪故事中的变化,从而在动态环境中进行有效的多步推理。这种方法显著提高了LLMs的性能,例如:在BIG-bench-hard数据集的跟踪打乱对象任务中,结构引导提示框架相比零样本链式思维(0-CoT)提高了146%的性能。
二、SGP框架存在的缺陷及未来研究方向
尽管大型语言模型(LLMs)能够成功构建和导航知识图谱(KG),但在得出最终结论时仍会出错。例如,LLM可能正确地识别了“苹果”是一种水果,并且知道它通常生长在树上,但在最后一步却错误地认为“苹果”是动物。为了解决这个问题,未来的计划是引入另一个LLM来检查生成的内容是否一致,以减少错误。
此外,KG在表达自然语言的丰富性方面存在局限。比如,KG可能很难准确表达“他因为失恋而感到沮丧”这样的情感和上下文依赖的信息。因此,未来的研究需要探索更有效的方法来表示信息之间的关系,例如:
-
扩展KG:增加一元属性(如“颜色”、“形状”)和二元谓词(如“喜欢”、“讨厌”),以便更全面地描述事件和对象。
-
增强文本分析:提高检测文本中的蕴含(如“他没去”意味着“他不在那里”)、矛盾(如“他是学生,但他在工作”)和合取(如“他既是老师又是作家”)的能力。
-
整合NLP技术:结合命名实体识别(如识别“北京”是城市)、依存句法分析(如分析句子中词语之间的关系)和实体解析(如确定不同句子中的“他”指的是同一个人),以更好地捕捉和澄清文本中的复杂关系。
通过这些改进,可以提升LLMs在处理自然语言时的准确性和推理能力。
三、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】