随着 AI Agent(智能体)在生产环境中迅速落地,我们逐渐发现:
“写好一个 prompt” 远远不足以让一个智能体稳定、可控、持久地工作。
现代 Agent 不再是简单的“问一句、答一句”。它们需要:
- 管理多轮对话
- 调用工具并处理结果
- 整合外部知识
- 维持状态与任务进展
- 在长时程任务中持续决策
这意味着,LLM 的输入(context / 上下文)已经变成一个由:
✅ 系统角色指令
✅ 工具定义
✅ 历史消息
✅ 动态检索内容
✅ 内部状态(notes、计划、决策)
组成的复杂信息结构。
Prompt Engineering 已无法涵盖这些复杂性,
我们需要一个更系统、更工程化、更可控的思维模式:Context Engineering(上下文工程)。
Anthropic 在其文章《Effective Context Engineering for AI Agents》中提出了一套非常实用的心智模型,帮助开发者高效构建 Agent 的上下文,让模型在有限的上下文窗口内发挥最大效能。
以下是对这篇文章的技术解读与实践总结。
一、什么是上下文工程(Context Engineering)?
- 在 Anthropic 看来,上下文工程是提示工程(Prompt Engineering)的自然演进。它不只是关心怎么写好一个 prompt,而是要系统地管理整个输入给 LLM(大语言模型)的信息集合。这些信息不仅有系统提示(system prompt),还有工具定义、消息历史、外部检索数据、运行状态等。
- “上下文”指的就是 LLM 推理(inference)时所能看到的一组 token。Anthropic 认为,这组 token 是一种「关键但有限」的资源。
- 工程的问题在于:如何在 LLM 的固有限制(例如上下文窗口大小、注意力预算)之下,让这些 token 的“价值/信号”最大化,以稳定地产生我们期望的行为。
二、为什么上下文工程对构建智能体非常重要?
- 虽然 LLM 很强大、能处理很多信息,但当上下文变得非常大时,模型的表现并不是无限提升。Anthropic 指出会出现 “上下文腐烂”(context rot) 的现象:上下文越长,有用信息可能反而被埋没,模型难以精确调用以前的内容。
- 这种问题的根源在于 Transformer 架构:随着 token 数量的增加,模型计算所有 token 之间注意力关系的复杂性是 O(n^2),且随着上下文变长,模型关注重点 (attention) 会被摊薄。
- 此外,训练时数据中较短序列更常见,这意味着模型在训练过程中对非常长上下文的“长期关系”可能缺乏足够经验。
- 所以,设计者不能简单地把尽可能多的信息塞进上下文,而是要“有选择地填入高信噪比 (high-signal) 的 token”。
三、高效上下文的核心组成部分
Anthropic 提出了一个心智模型 (mental model),从多个维度来设计和优化上下文。下面是关键组成
系统提示(System Prompts)
提示语要既明确又灵活。不能太僵化地写很多条件分支 (if-else),但也不能太模糊只写“帮我做这个”。
推荐结构化提示 (structured prompt):可以用 Markdown 或 XML 标签把背景、指令、工具说明、输出格式等部分分开组织,这样清晰又模块化。
工具 (Tools)
设计工具时,要尽量保持简洁、小而明确。工具之间功能重叠会带来混乱。
参数要清晰无歧义,这样 LLM 调用工具时误解概率更小。
工具要健壮 (robust):对错误有容错能力。
示例 (Few-shot Examples)
不推荐在上下文里列出大量边缘案例 (edge cases),更好的做法是选一些代表性、多样化、典型但不冗余的示例。
这样能帮助模型理解预期行为,又不会占用太多上下文空间。
动态上下文管理 (Dynamic Context Strategy)
即时检索 (Just-in-time context):不把所有内容预加载,而是在 Agent 执行过程中,根据需要用工具 (比如读文件、查数据库) 动态拉入相关信息。这样可以节省上下文空间,并且更灵活。
混合策略 (Hybrid Strategy):在某些任务里可以预加载关键数据 + 运行时补充信息,这样在速度和资源消耗之间做平衡
处理长时程 / 多轮任务的技术
Anthropic 针对那些持续时间很长 (hours 或更久)、会超过单个上下文窗口容量的任务,提供了三种策略:
| 技术 | 作用 | 适用场景 |
|---|---|---|
| 压缩 (Compaction) | 对历史对话 /状态做总结、压缩,只保留关键内容 | 对话非常多轮、上下文窗口快满的时候 |
| 结构化笔记 (Structured Note-Taking) | 把关键信息 (决策、里程碑、状态) 存到外部存储 (如 NOTES.md),成为智能体的长期记忆 | 有明确里程碑 /阶段性的任务 (例如开发、研究) |
| 子智能体 (Sub-agent 架构) | 把复杂任务拆成多个子任务,让专门的子智能体负责具体部分,主智能体负责协调 | 并行探索、复杂研究、多领域任务等 |
上下文策划 (Curation) 心智模型
每次 Agent 要做推理 (下一步) 时,都需要「策划 (curate)」哪些信息进入上下文窗口。这是一个循环、迭代的过程 (不是一次写好就不管)。
策划目标就是 “最小但高信噪比 (high-signal)” — 把最有可能影响决策 /行为的 token 放进去,同时避免上下文臃肿。
四、上下文工程的一些落地思考和挑战
- 设计成本:比起单纯 prompt-engineering,上下文工程更复杂,因为你得考虑工具、记忆、检索、压缩等多个维度。
- 性能权衡:即时检索虽然灵活,但比一次性预加载可能慢;压缩虽然省空间,但如果总结得不好,可能丢失重要信息。
- 记忆一致性:长期记忆 (结构化笔记) 的设计很关键,如何组织这些信息 (格式、优先级、读写策略) 会影响 Agent 后续行为的连贯性。
- 子智能体协作复杂性:使用子智能体架构虽然能提升复杂任务处理能力,但也带来了子智能体之间通信、状态同步、结果整合等挑战。
五、为什么这篇文章对开发者/工程团队很有价值
- 它帮助我们从 宏观视角 去看 Agent 的设计 — 不只是“写 prompt”,而是整个上下文 (信息输入) 的策略。
- 提供了实践可行的方法:压缩、记笔记、子智能体,这些都可以应用在真实的 Agent 系统里。
- 强调上下文不是无限的,而是一个需要精细管理的资源。这种“资源视角 (resource-conscious)”对构建可扩展、稳定的智能体非常重要。
- 对未来 Agent 架构 (多轮、多工具、长期任务) 的构建提供了路径。
六、总结 & 核心结论
- 上下文工程 是构建现代 AI 智能体 (Agent) 的关键能力。
- 它不是一次性任务,而是一个循环、迭代、策划 (curation) 的过程。
- 关键原则是:用最少的 token (上下文) 达到最大的效果。
- 实践策略包括压缩 (compaction)、结构化笔记 (agentic memory)、子智能体 (sub-agent architecture) 等。
- 虽然复杂,但这样设计能让 Agent 更高效、更可靠,更适应复杂和长时间运行的任务。
那么,如何系统的去学习大模型LLM?
作为一名深耕行业的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~

👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。


👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。

👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。

👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。

👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
1351

被折叠的 条评论
为什么被折叠?



