转置卷积(transposed-convolution)

目录

一、什么是转置卷积

1、转置卷积的背景

2、对反卷积的误解

3、转置卷积的计算

二、代码实现

1、padding=0, stride=1和单通道

2、padding≠0, stride≠1和多通道

三、总结


一、什么是转置卷积

1、转置卷积的背景

       通常,对图像进行多次卷积运算后,特征图的尺寸会不断缩小。而对于某些特定任务 (如图像分割和图像生成等),需将图像恢复到原尺寸再操作。这个将图像由小分辨率映射到大分辨率的尺寸恢复操作,叫做上采样 (Upsample),如下图所示:

对于上采样(up-sampling)操作,目前有着一些插值方法进行处理:

  • 最近邻插值(Nearest neighbor interpolation)
  • 双线性插值(Bi-Linear interpolation)
  • 双立方插值(Bi-Cubic interpolation) 

       然而,这些上采样方法都是基于人们的先验经验来设计的,在很多场景中效果并不理想 (如:规则固定、不可学习)。因此,我们希望神经网络自己学习如何更好地插值,即接下来要介绍的转置卷积。 与传统的上采样方法相比,转置卷积的上采样方式并非预设的插值方法,而是同标准卷积一样,具有可学习的参数,可通过网络学习来获取最优的上采样方式

2、对反卷积的误解

       曾经,转置卷积又称反卷积 (Deconvolution)。zfnet在他们可视化的时候,利用到了《Zeiler, M., Taylor, G., and Fergus, R. Adaptive deconvolutional networks for mid and high level featurelearning. In ICCV, 2011》这篇论文中的反卷积操作,进行特征图的可视化,那什么是deconv操作呢?实际上deconv是有误导性的,令人误认为是卷积的逆运算,实际上cnn的卷积是不可逆的,deconv实际上是转置卷积(Transposed Convolution),是对矩阵进行上采样的一种方法。deconv的作用一般有以下几种:

(1)unsupervised learning(无监督学习):其实就是covolutional sparse coding:这里的deconv只是观念上和传统的conv反向,传统的conv是从图片生成feature map,而deconv是用unsupervised的方法找到一组kernel和feature map,让它们重建图片。
(2)CNN可视化:通过deconv将CNN中conv得到的feature map还原到像素空间,以观察特定的feature map对哪些pattern的图片敏感,这里的deconv其实不是conv的可逆运算,只是conv的transpose,所以tensorflow里一般取名叫transpose_conv。
(3)upsampling(上采样):在pixel-wise prediction比如image segmentation以及image generation中,由于需要做原始图片尺寸空间的预测,而卷积由于stride往往会降低图片size, 所以往往需要通过upsampling的方法来还原到原始图片尺寸,deconv就充当了一个upsampling的角色。在语义分割中,会在编码器中用卷积层提取特征,然后在解码器中恢复原先尺寸,从而对原图中的每个像素分类。该过程同样需用转置卷积。经典方法有 FCN 和 U-Net。

       反卷积很少用在深度学习中,我们说的反卷积神经网络其实是指用了转置卷积的神经网络。

3、转置卷积的计算

       让我们暂时忽略通道,从基本的转置卷积开始,设步幅为1且没有填充。假设我们有一个$n_h \times n_w$的输入张量和一个$k_h \times k_w$的卷积核。以步幅为1滑动卷积核窗口,每行$n_w$次,每列$n_h$次,共产生$n_h n_w$个中间结果。每个中间结果都是一个$(n_h + k_h - 1) \times (n_w + k_w - 1)$的张量,初始化为0。为了计算每个中间张量,输入张量中的每个元素都要乘以卷积核,从而使所得的$k_h \times k_w$张量替换中间张量的一部分。请注意,每个中间张量被替换部分的位置与输入张量中元素的位置相对应。最后,所有中间结果相加以获得最终结果。

       下图解释了如何为$2\times 2$的输入张量计算卷积核为$2\times 2$的转置卷积。

fig1:2×2输入张量计算卷积核为2×2的转置卷积,stride=1,padding=0

       一个重要结论:输入高(宽)为$n$、核$k$、填充$p$、步幅$s$,进行转置卷积,如果k=2p+s,那么转置卷积会将输入的高和宽分别放大$s$倍。

二、代码实现

1、padding=0, stride=1和单通道

       我们可以对输入矩阵X和卷积核矩阵K(实现基本的转置卷积运算)trans_conv。

def trans_conv(X, K):    # stride=1, padding=0
    h, w = K.shape
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            Y[i: i + h, j: j + w] += X[i, j] * K
    return Y

       与通过卷积核“减少”输入元素的常规卷积相比,转置卷积通过卷积核“广播”输入元素,从而产生大于输入的输出。我们可以通过构建输入张量X和卷积核张量K从而验证上述实现输出。此实现是基本的二维转置卷积运算。

X = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
trans_conv(X, K)
tensor([[ 0.,  0.,  1.],
        [ 0.,  4.,  6.],
        [ 4., 12.,  9.]])

       或者,当输入X和卷积核K都是四维张量时,我们可以使用高级API获得相同的结果。

X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)    # (b, c, h, w)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
tconv(X)
tensor([[[[ 0.,  0.,  1.],
          [ 0.,  4.,  6.],
          [ 4., 12.,  9.]]]], grad_fn=<ConvolutionBackward0>)

2、padding≠0, stride≠1和多通道

(1)转置卷积的填充

       与常规卷积不同,在转置卷积中,填充被应用于的输出(常规卷积将填充应用于输入)。例如,当将高和宽两侧的填充数指定为1时,转置卷积的输出中将删除第一和最后的行与列。

tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
tconv(X)
tensor([[[[4.]]]], grad_fn=<SlowConvTranspose2DBackward0>)

(2)转置卷积的步幅

       在转置卷积中,步幅被指定为中间结果(输出),而不是输入。使用fig1中相同输入和卷积核张量,将步幅从1更改为2会增加中间张量的高和权重,如图fig2。

fig2:2×2输入张量计算卷积核为2×2的转置卷积,stride=2,padding=0

       以下代码可以验证fig2中步幅为2的转置卷积的输出。

tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
tconv(X)
tensor([[[[0., 0., 0., 1.],
          [0., 0., 2., 3.],
          [0., 2., 0., 3.],
          [4., 6., 6., 9.]]]], grad_fn=<SlowConvTranspose2DBackward0>)

(3)转置卷积中的通道

       对于多个输入和输出通道,转置卷积与常规卷积以相同方式运作。假设输入有$c_i$个通道,且转置卷积为每个输入通道分配了一个$k_h\times k_w$的卷积核张量。当指定多个输出通道时,每个输出通道将有一个$c_i\times k_h\times k_w$的卷积核。

       同样,如果我们将$\mathsf{X}$代入卷积层$f$来输出$\mathsf{Y}=f(\mathsf{X})$,并创建一个与$f$具有相同的超参数、但输出通道数量是$\mathsf{X}$中通道数的转置卷积层$g$,那么$g(Y)$的形状将与$\mathsf{X}$相同。下面的示例可以解释这一点。

X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
tconv(conv(X)).shape == X.shape
True

三、总结

  • 与通过卷积核减少输入元素的常规卷积相反,转置卷积通过卷积核广播输入元素,从而产生形状大于输入的输出。
  • 如果我们将$\mathsf{X}$输入卷积层$f$来获得输出$\mathsf{Y}=f(\mathsf{X})$并创造一个与$f$有相同的超参数、但输出通道数是$\mathsf{X}$中通道数的转置卷积层$g$,那么$g(Y)$的形状将与$\mathsf{X}$相同。
  • 我们可以使用矩阵乘法来实现卷积。转置卷积层能够交换卷积层的正向传播函数和反向传播函数。 
  • 13
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
转置卷积Transposed Convolution),也称为上采样(Upsampling)或反卷积(Deconvolution),是深度学习中一种特殊的卷积操作,它与传统的卷积有着显著的区别。下面是它们的主要区别: 1. **方向性**: - **卷积**(Convolution)是从左到右、从前到后的局部感知,信息由输入向输出传递,减少尺寸并提取特征。 - **转置卷积**则反其道而行之,从输出向输入传递信息,它的目的是增加输出的维度,通常用于降维后的特征图恢复原始尺寸。 2. **滤波器的作用**: - 卷积是特征检测,通过滑动滤波器对输入数据进行加权求和,提取出特征。 - 转置卷积则是反向操作,它将滤波器应用到较小的特征图上,通过“膨胀”或插值的方式生成更大的输出,同时可以加入一些额外的参数来控制特征的生成。 3. **应用场景**: - 卷积常用于图像分类、物体检测等任务,减少数据的尺寸以提取更高级别的特征。 - 转置卷积主要在上采样阶段使用,比如在生成对抗网络(GANs)的生成器部分,用于将低分辨率的潜在向量转换回高分辨率的图像;或者在卷积神经网络的解码阶段,恢复被卷积层降维的特征图尺寸。 4. **数学表示**: - 卷积是线性的运算,通过滑动窗口计算每个位置的输出,输出通道数取决于滤波器的数量。 - 转置卷积则涉及到跨通道的元素复制或插值,以及可能的非线性变换,以生成更大尺寸的输出。 相关问题: 1. 转置卷积如何处理图像尺寸的变化? 2. 什么时候会用到反卷积而非普通的卷积? 3. 转置卷积能否保持空间上下文信息?

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值