利用LDA进行主题建模,用困惑度和一致性曲线选取最优主题数

1、所用的文档格式.txt

这里用的是已经分词好的txt文本文档

2、LDA主题建模

将文本文档转化为列表,然后构建词典,语义向量化表示。

import gensim
from gensim import corpora
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import warnings

from gensim.models.coherencemodel import CoherenceModel
from gensim.models.ldamodel import LdaModel


# 将文档转化为列表
f = open("D:\\data\\1\\lda_江苏.txt",'r',encoding='utf-8')
content = f.read()
my_content = content.split('\n')
#print(my_content)
#print(type(my_content))

# 构建词典,语料向量化表示
dictionary = corpora.Dictionary([my_content])  # 构建词典
corpus = [dictionary.doc2bow(text) for text in [my_content]]  
ldamodel = LdaModel(corpus, num_topics=5, id2word = dictionary, passes=10)   #分为5个主题
for topic_id in range(ldamodel.num_topics):
    print(f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值