机器学习笔记

本文介绍了使用Python进行数据预处理,包括数据导入、清理、标准化,构建线性回归模型,通过训练集和测试集进行模型训练,最后评估模型性能,如计算F1分数。
摘要由CSDN通过智能技术生成

 一、数据预处理

       1.数据导入:导入数据集

import pandas as pd

data = pd.read_csv('data.csv')

       2.数据清理:补充缺失值,查找离群值,消除噪声数据,将数据格式标准化,还可以进行特征提取、归一化等操作,下面代码是对数据进行标准化

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
data = scaler.fit_transform(data)

二、构建模型

在python中,我们可以使用sklearn库构建各种机器学习模型,如线性回归模型,决策树模型,支持向量机模型等等。下面我们以线性回归模型为例构建一个简单模型。

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X, y)

三、训练模型

构建好模型后,我们要使用数据集对模型进行训练。数据集通常分为训练集和测试集,可以使用sklearn库进行数据分割。

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

将数据分割好后对模型进行训练。

model.fit(X_train, y_train)

四、评估模型

训练完成后,我们对模型进行评估。可以使用各种指标评估模型的性能,例如准确率、精度、召回率、F1值等。

from sklearn.metrics import f1_score 
f1_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)

     

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值