机器学习模型评估指标

1、准确率(Accuracy)

        Accuracy = (TP+TN)/(TP+FN+FP+TN)

from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_pred, normalize=True, sample_weight=None) 


2、精确率(Precision)

        预测为正的里面有多少真正是正的概率为查准率。
Precision = TP/(TP+FP)

from sklearn.metrics import precision_score
precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary')


3、召回率(Recall)

        召回率表现出在实际正样本中,分类器能预测出多少。与真正率相等。
Recall = TP/(TP+FN)

from sklearn.metrics import recall_score
sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1,average='binary', sample_weight=None)


4、F1 score

        F1指标:2/F1 =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值