图神经网络简介

本文介绍了图神经网络的基本概念,包括其与其他机器学习模型的区别,面临的难点,以及在不同任务中的应用。图神经网络能处理节点间有联系的数据,其优势在于自动学习特征,减少了对人工特征工程的依赖。文章还概述了图神经网络的多种方法和技术,如图卷积网络、图自注意力网络等,并提到了它们在节点分类、边预测、社群检测及整个图层面预测等任务中的应用。
摘要由CSDN通过智能技术生成

图神经网络简介

1.1,图神经网络与其他的区别

  • 传统机器学习
    传统机器学习需要样本之间是独立同分布的,而图是节点连接而成的,代表着节点之间是有关联的
  • 卷积神经网络(像素矩阵数据)
  • RNN和transformer(序列数据)

1.2,图神经网络的难点

  • 任意尺寸的输入和复杂的结构
  • 没有固定的顺序和参考的锚点
  • 动态变化的、有时候有多模态特征

1.3,图神经网络

input是一个graph
output可以是:node labels(节点的类别)、New links(某两个节点的新连接)、Genrated graphs and subgraphs(产生新的图或者新的子图)

此过程的优点:可以自动实现一个自动学习特征的过程(类似CNN),不需要人工的特征工程(representation learning)

补充:什么叫representation learning(表示学习)
表示学习可以将一个文本或者图像等映射成一个D维向量,该向量能够包含原来的语义信息图神经网络可以把一个节点映射成一个向量(node embedding(图嵌入)也叫作表示学习)

1.4,outlines of graph

  • Traditional
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值