图神经网络简介
1.1,图神经网络与其他的区别
- 传统机器学习
传统机器学习需要样本之间是独立同分布的,而图是节点连接而成的,代表着节点之间是有关联的 - 卷积神经网络(像素矩阵数据)
- RNN和transformer(序列数据)
1.2,图神经网络的难点
- 任意尺寸的输入和复杂的结构
- 没有固定的顺序和参考的锚点
- 动态变化的、有时候有多模态特征
1.3,图神经网络
input是一个graph
output可以是:node labels(节点的类别)、New links(某两个节点的新连接)、Genrated graphs and subgraphs(产生新的图或者新的子图)
此过程的优点:可以自动实现一个自动学习特征的过程(类似CNN),不需要人工的特征工程(representation learning)
补充:什么叫representation learning(表示学习)
表示学习可以将一个文本或者图像等映射成一个D维向量,该向量能够包含原来的语义信息图神经网络可以把一个节点映射成一个向量(node embedding(图嵌入)也叫作表示学习)
1.4,outlines of graph
- Traditional