李宏毅深度学习笔记13( GAN-01)

这篇博客探讨了GAN(生成对抗网络)的基础概念,包括generator如何通过改变参数生成图像,以及discriminator的评分机制。文章介绍了GAN的训练算法,强调了generator与discrimination的对抗性学习过程。通过示例展示,说明了经过大量迭代后,generator可以学习到生成逼真图像的能力。
摘要由CSDN通过智能技术生成

Basic Idea of GAN(GAN的基础概念)

generator:可以通过改变参数改变所要的图片内容(比如改变矩阵中第几个数就可以改变图片中二次元人物的嘴的大小,或者头发的颜色等等).
在这里插入图片描述
discrimination:类似于一个评分机制.图片输出后,给出相应的评分结果.
在这里插入图片描述
generator与discrimination是属于对立关系,两者属于对抗状态,所以当generator逐渐增强和演化的时候,discrimination也不断的增强和演化。(也可以理解成和平的比喻:互相追逐学习)

Algorithm(算法)

1.固定generator,只调discrimination(Discriminator learns to assign high scores to real objects and low scores to generated objects.)
2.固定discrimination,只调generator(Generator learns to “fool” the discriminator)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值