一元线性回归分析
一元回归分析的基本概念
回归模型的建立一般包括:
(1)通过某事物现,转化为具体问题;
(2)确定指标变量,收集整理数据,并构建模型进行参数估计;
(3)模型的检验,当模型检验不通过时,需要重新修改模型;
(4)模型的应用,得出结论,运行给出决策等。
基本概念
通常我们要先收集与研究相关的数据的一组或者多组样本,为直观观察数据的分布规律,我们可以将收集到每组数据绘制二维数据散点图。
一元回归分析的参数估计
一元回归模型的参数估计一般采用极大似然法与最小二乘法,其中最常用的是最小二乘法估计。
相关系数的检验
实际例子:
#给出因变量自变量的值
x <- c(3.4,1.8,4.6,2.3,3.1,5.5,0.7,
3.0,2.6,4.3,2.1,1.1,6.1,4.8,3.8)
y <- c(26.2,17.8,31.3,23.1,27.5,36.0,14.1,
22.3,19.6,31.3,24.0,17.3,43.2,36.4,26.1)
plot(x