一元线性回归分析与建模

本文详细介绍了如何进行一元线性回归分析,包括基本概念、参数估计、模型检验、相关系数的检验、方差分析、相关性检验、残差分析以及模型诊断。通过实例展示了回归方程的显著性、相关系数及其显著性检验,以及残差的正态性和方差齐性检查。最后,提到了模型诊断中的多个图表用于评估模型的适用性。
摘要由CSDN通过智能技术生成

一元线性回归分析

一元回归分析的基本概念
回归模型的建立一般包括:
(1)通过某事物现,转化为具体问题;
(2)确定指标变量,收集整理数据,并构建模型进行参数估计;
(3)模型的检验,当模型检验不通过时,需要重新修改模型;
(4)模型的应用,得出结论,运行给出决策等。

基本概念
通常我们要先收集与研究相关的数据的一组或者多组样本,为直观观察数据的分布规律,我们可以将收集到每组数据绘制二维数据散点图。

一元回归分析的参数估计
一元回归模型的参数估计一般采用极大似然法与最小二乘法,其中最常用的是最小二乘法估计。

相关系数的检验

实际例子:

#给出因变量自变量的值
x <- c(3.4,1.8,4.6,2.3,3.1,5.5,0.7,
       3.0,2.6,4.3,2.1,1.1,6.1,4.8,3.8)
y <- c(26.2,17.8,31.3,23.1,27.5,36.0,14.1,
       22.3,19.6,31.3,24.0,17.3,43.2,36.4,26.1)
plot(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值