【GEE】Google Earth Engine(GEE)注册详细教程&无需教育邮箱

本文介绍了GEE,一款由谷歌开发的云端地理数据处理工具,讲解了其基本概念、应用场景、注册方法和登录流程,以及作者计划分享的学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        这个专栏真的是纠结了很久,不知道到底要不要分享自己在学习GEE的时候的一些经验和代码。因为本人在日常中使用Python和ENVI多点,虽然GEE也会用但不至于频繁使用,同时针对GEE其实官网给出了很多接口的使用方法,国内外也有很多人分享过一些实操代码,因此大部分代码可能都是重复的,感觉没什么创新力。最近在搞热岛效应又要用到GEE了,所以思虑再三还是开一个专栏分享一下GEE的用法吧。

一、前言

        GEE(Google Earth Engine)是一款由谷歌开发的云端地理数据处理工具,它利用云计算的能力,提供全球地理空间数据的存储、处理和分析服务。GEE适用于各种领域,如地理信息系统(GIS)、环境科学、城市规划、考古学等,能够帮助用户快速处理和分析大量的地理数据,以解决实际问题。

        GEE的基本概念是利用云计算技术,对全球地理数据进行大规模并行处理。它允许用户通过编写JavaScript代码来定义和处理地理数据。GEE提供了一个在线开发环境,用户可以在浏览器中编写和运行代码,对地理数据进行处理和分析。

        GEE的应用场景非常广泛。例如,在环境科学领域,可以使用GEE来分析和可视化全球气候变化数据,以了解气候变化的趋势和影响。在城市规划领域,可以使用GEE来分析和可视化城市人口分布和交通流量数据,以制定更加合理的城市规划方案。在考古学领域,可以使用GEE来分析和可视化历史地理数据,以了解人类文明的演变和发展。

二、注册方法

        GEE在前两年的时候注册不仅需要教育邮箱,还需要编一段话去申请,大概率会审核失败。博主那个时候就没申请成功,每次都是借用别人的账号去写代码。但最近,GEE放开了这个限制以至于注册非常非常简单,你只需要拥有一个Gmail账号(这个自己百度如何注册,很简单),就可以创建Cloud Project进行编码使用了。

        1)注册云服务

        打开GEE的官网,点击“Noncommercial”选项。

        跳转页面后,点击“Get Started”

        2)创建云项目

        跳转页面后,点击Register a Noncommercial or Commercial Cloud project,创建一个云项目。

        随后选择“Unpaid usage”选项,在“Project type”中选择创建这个Cloud Project的应用领域,建议大家就选择第一项“Academia & Research”选项。

        随后我们选择是创建新的项目,还是打开这个谷歌账号之前创建的项目。如果是新项目,第一项选择“No organization”,后面两项自行配置即可。

        然后确认之前的设置。

3)享用GEE

        上面的搞完后就可以直接进入GEE的编程界面了,是不是很简单!

三、登录事项

        如果大家通过上面的方法注册成功了,那么下次再想进入编程界面就不要傻乎乎的再点击创建云项目了,直接点击下面的Click here to go to the Code Editor即可。

        GEE是一款强大的在线地理数据处理工具,它利用云计算的能力,提供全球地理空间数据的存储、处理和分析服务。适用于各种领域,能够帮助用户快速处理和分析大量的地理数据,以解决实际问题。使用GEE需要一定的编程基础和地理数据处理经验,但它的强大功能和灵活性使得它成为地理数据处理领域的必备工具之一。

        我后面会抽时间分享一些GEE的操作和代码,当然只是一起学习交流,我的GEE也不是特别熟,反正大家一块进步嘛!

<think>嗯,用户想获取关于GEEGoogle Earth Engine)的星系信息和资源,特别是与数据处理和遥感相关的内容。首先,我需要确认“星系”在这里的具体含义。可能用户指的是卫星数据,比如不同卫星的数据集,或者天文方面的星系数据?但结合上下文中的引用内容,GEE主要用于地球观测,比如Landsat、Sentinel等卫星数据,而不是天文星系。所以可能用户有笔误,或者想了解GEE中的卫星数据资源。 接下来,我需要参考用户提供的引用内容。引用[1]和[2]详细介绍了GEE的功能,包括其处理遥感数据的能力,支持的数据集如MODIS、Landsat、Sentinel,以及气象数据。引用[3]提到了上传矢量数据的问题,可能涉及数据处理中的常见错误。用户的问题核心应该是如何在GEE中处理这些卫星数据,以及可用的资源。 根据系统级指令,回答需要结构清晰,分步骤解决问题。首先应该介绍GEE中可用的卫星数据集,然后说明数据处理的基本流程,再给出代码示例,最后生成相关问题。同时,要确保所有数学公式和代码块格式正确,使用中文回答,并添加引用标识。 需要检查是否有遗漏的关键点,比如GEE的数据访问方式、API使用、常见问题解决(如引用[3]中的上传错误)。另外,用户提到“星系”,可能需要确认是否涉及多源数据融合或时间序列分析,这在遥感处理中是常见的应用,可以适当扩展。 最后,生成的相关问题需要围绕GEE数据处理、应用场景、技术优势等,确保问题具有针对性和延伸性,帮助用户进一步探索。</think>### GEEGoogle Earth Engine)卫星数据处理与遥感应用 #### 1. GEE支持的卫星数据集 GEE集成了超过1000个公共数据集,覆盖地球科学领域的多源遥感数据,包括: - **Landsat系列**:提供1972年至今的全球中分辨率影像,支持地表覆盖长期监测[^2]。 - **Sentinel系列**:包含高分辨率雷达(Sentinel-1)和多光谱影像(Sentinel-2),适用于精准农业和灾害监测。 - **MODIS**:每日更新的全球植被指数(NDVI)和地表温度数据,公式为: $$ \text{NDVI} = \frac{\text{NIR} - \text{Red}}{\text{NIR} + \text{Red}} $$ - **气象数据**:如NCEP再分析数据,提供温度、降水等参数的时间序列分析。 #### 2. 数据处理流程示例 以下为GEE中计算NDVI的典型代码框架: ```javascript var sentinel2 = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED') .filterDate('2023-01-01', '2023-12-31') .filterBounds(geometry); var ndvi = sentinel2.map(function(image) { return image.normalizedDifference(['B8', 'B4']).rename('NDVI'); }); Map.addLayer(ndvi.mean(), {min:0, max:1, palette:['white', 'green']}, 'NDVI'); ``` 此脚本完成时间序列NDVI计算与可视化,利用云端计算避免数据下载[^2]。 #### 3. 独特技术优势 - **海量数据处理**:单次运算可处理PB级数据,如全球30米分辨率土地覆盖分类 - **时序分析能力**:支持$(\text{imageCollection.filterDate()})$快速构建时间序列 - **算法集成**:内置$(\text{ee.Reducer()})$统计模块,可计算均值、方差等指标 #### 4. 典型应用场景 | 领域 | 数据组合 | 算法案例 | |------------|------------------------------|------------------------------| | 农业监测 | Sentinel-2 + MODIS | 作物分类(随机森林算法) | | 森林火灾 | Landsat-8 + VIIRS热点数据 | 燃烧指数计算$(\text{NBR})$ | | 城市扩张 | 夜间灯光数据 + Landsat | 主成分分析(PCA) |
评论 38
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RS迷途小书童

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值