
GEE学习专栏
文章平均质量分 69
主要是针对多数人需要了解问题和一些相对较难的问题进行解决,适合有一定基础的同学!
此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
-
GEE动图:利用JRC/GSW1_4/YearlyHistory数据绘制指定年份的湖泊动态视频并下载(巢湖为例)
首先,我们需要定义一个多边形区域,该区域将是我们分析的重点。通过上述步骤,我们成功地生成了一个展示特定区域水体变化的动画,并且在图像上添加了年份标签。这一过程展示了如何利用 Google Earth Engine 强大的数据处理能力进行环境监测和分析。如果你对代码或过程有任何疑问,请随时留言讨论!原创 2025-04-16 08:00:00 · 558 阅读 · 0 评论 -
Google Earth Engine——土地分类的图层可视化可以不用设定调色板参数了了palette
如需在分类图片上保存颜色调色板,以免忘记应用它们,您可以为每个分类波段设置两个特殊命名的字符串图片属性。原创 2025-03-14 01:00:00 · 305 阅读 · 0 评论 -
GEE训练教程——基于IDAHO_EPSCOR/TERRACLIMATE数据的中国区域蒸散发的时序和可视化分析
通过上述步骤,我们成功地利用遥感数据分析了特定地区的实际蒸散发量,并通过图表和图例直观展示了结果。这种方法不仅可以用于蒸散发量的分析,还可以应用于其他环境监测和资源管理的研究中。希望这篇博客对您理解遥感数据分析有所帮助!原创 2025-03-08 00:30:00 · 477 阅读 · 0 评论 -
GEE图表:使用Google Earth Engine分析了特定区域的NDVI时序图表
首先,我们需要定义一个多边形区域,作为分析的基础。通过以上步骤,我们成功地使用Google Earth Engine分析了特定区域的NDVI。这项技术为植被监测和生态研究提供了强大的工具。希望这篇博客能帮助你更好地理解如何使用GEE进行数据分析!原创 2025-02-20 00:00:00 · 501 阅读 · 0 评论 -
GEE土地分类:使用Google Earth Engine中esri_lulc10数据分析了特定区域的城市化变化,特别是建筑用地的变化面积
首先,我们需要定义一个多边形区域,作为我们分析的基础。]);通过以上步骤,我们成功地使用Google Earth Engine分析了特定区域的城市化变化,特别是建筑用地的变化。这一过程为城市规划和环境管理提供了重要的数据支持。希望这篇博客能帮助你更好地理解如何使用GEE进行土地覆盖分析!原创 2025-02-19 00:00:00 · 304 阅读 · 0 评论 -
GEE教程:基于Google Earth Engine的水体指数分析:Sentinel-2数据与MNDWI计算
通过GEE资产库加载自定义行政区划矢量边界使用实现地图视图自动居中1.2 时间范围设置定义时间范围:2019年全年数据支持灵活调整起止年月进行时序分析2. 数据预处理流程2.1 云掩膜处理技术要点:使用云概率波段(0-100%范围)设置10%为阈值:表示保留云概率<10%的清晰像元相比传统QA波段方法更精细控制云污染2.2 辐射定标处理数据规格:Sentinel-2 L2A地表反射率数据存储为uint16整型实际反射率值 = 原始值 × 0.0001(原创 2025-02-15 01:30:00 · 935 阅读 · 0 评论 -
GEE教程:使用 Google Earth Engine 中sentinel-2数据计算土壤耕作比率(STR)
首先,我们需要定义我们的研究区域(AOI),并将地图中心设置为该区域。我们将使用存储在项目中的矢量文件。// 将地图中心设置为研究区域,缩放级别为5。原创 2025-02-15 01:30:00 · 985 阅读 · 0 评论 -
GEE 火灾分析——一个用于生成预测模型和变量重要性的随机森林(Random Forest)方法的研究
主要内容涉及一个用于生成预测模型和变量重要性的随机森林(Random Forest)方法的研究。以下是对文本的详细分析:1. **目的和背景**:- 文本开头提到“目的:论文 - 随机森林用于生成预测模型和变量重要性”,这表明作者安德烈亚·苏洛瓦(Andrea Sulova)正在进行一项研究,旨在利用随机森林算法来分析和预测与澳大利亚火灾相关的数据。原创 2024-11-15 15:30:00 · 843 阅读 · 0 评论 -
GEE 更新和优化:利用GEE在线处理1985-2024年NDVI、EVI、SAVI、NDMI等指数归一化教程!(Landsat C02 数据)
本次的归一化教程,优化了数据去云,预处理等过程,同事将landsat 5/7/8集合分别进行了数据整合,也就是原始波段的处理,从而我们可以调用1985-至今任何一个时期的影像进行归一化处理。具体的原文介绍 请看原始的博客。原创 2024-08-29 09:53:43 · 1952 阅读 · 0 评论 -
GEE学习——初学者如何下载指定区域的Sentinel-2影像
初学者如何下载指定区域的Sentinel-2影像?初学者可以按照以下步骤利用Google Earth Engine(GEE)下载指定区域的Sentinel-2影像:登录GEE账号并打开代码编辑器。代码编辑器位于GEE主页左上角的"Code Editor"按钮。在代码编辑器中,点击左上角的"Apps Script"按钮,打开一个新的脚本。其中xMin,yMin,xMax,yMax是你定义的感兴趣区域的最小经度、最小纬度、最大经度和最大纬度。点击代码编辑器右上角的"Run"按钮运行脚本。原创 2024-03-22 10:30:00 · 2002 阅读 · 3 评论 -
GEE学习——如何在计算蒸散发量的过程中剔除水体面积带来的影响?(掩膜去除水体)
如何在计算蒸散发量的过程中剔除水体面积带来的影响?(掩膜去除水体)就像上面这句话,我们很多时候计算的是陆地上的蒸散发,而又担心如何去除水体蒸散发带来的影响,所以我们这里首要的方式就是通过掩膜的方式来进行,也就是将土地分类中水体的面积从整个研究区中去除调,然后将剩余的影像参与后续蒸散发计算。整个思路是非常简答的,所以我们这里只需要先加载相应的土地分类影像,选择对应的水体波段作为掩膜对象,然后找到蒸散发数据根据水体面积进行掩膜就成功了。在计算蒸散发量时,如果不剔除水体面积带来的影响,可能会导致计算结果偏高。原创 2024-03-14 20:00:00 · 1850 阅读 · 0 评论 -
GEE 底图加载——自定义底图样式加载案例分析(含免费引如多款底图)
在本教程中,您将学习如何更改地图对象的选项,以便为底层基础地图定义自己的样式。原创 2024-03-08 15:00:00 · 1284 阅读 · 3 评论 -
GEE案例——连续退化检测算法(Continuous Degradation Detection,CODED):归一化差异分数指数 (NDFI)
CODED Continuous Degradation Detection是一种利用大地遥感卫星数据监测低强度森林扰动的算法。该算法基于之前在连续土地覆被监测(Zhu 和 Woodcock,2014 年)和使用光谱非混合模型进行热带退化监测(Souza 等人,2013 年)方面的开发成果,并建立在谷歌地球引擎处理和数据存储系统之上。CODED 旨在为基于样本的退化森林估算创建分层。CODED 设计用于使用 30 米大地遥感卫星数据。在运行该算法之前,有必要创建一个多维数据堆栈。原创 2024-03-08 11:00:00 · 2110 阅读 · 0 评论 -
GEE代码条带问题——sentinel-1接缝处理的问题
我有兴趣确定 NDVI 损失最大的年份。我创建了一个函数来收集所有陆地卫星图像并应用预处理。当我导出结果以识别 NDVI 损失最大年份时,生成的数据产品与陆地卫星场景足迹有可怕的接缝线。造成这种情况的原因是什么以及如何调整代码?原创 2024-03-04 20:00:00 · 1346 阅读 · 1 评论 -
GEE案例——利用sentinel-2影像进行逐月各波段像元值的统计(均值)以2023年为例(包含图表可视化和CSV表格下载功能)
本教程案例的主要目标是实现研究区多个点或者是多个矢量斑块集合中影像像元值的批量逐月统计,这里我们利用遍历函数来实现每个月的统计,reduceregions函数来统计各波段的像元值,最后分别下载处理好的影像和像元值统计的表格,方便本地出图。原创 2024-02-29 11:00:00 · 1079 阅读 · 0 评论 -
GEE——数据导出时我们如何压缩数据导出(从16GB压缩到4GB)
我正在尝试使用 Dale Robert 博士的论文。当我下载最终的weight_gm时,它是一个15GB以上的图像。我想知道如何解决这个问题以及为什么会发生这种情况。理想情况下,如果可能的话,我希望图像在 3 到 4 GB 以内。int16()和float64()是两种不同的数据类型,它们在数据存储过程中有着显著的差异。下面我们将分别介绍这两种类型的特点和用法,以及它们在数据存储中的差异。首先,int16()是整数类型的一种,它占用16位(2字节)的存储空间。原创 2024-02-28 18:00:00 · 1184 阅读 · 0 评论 -
GEE数据更新——MODIS数据LST地表温度计算案例MODIS/006/ MOD11A1 已弃用并且没有新数据。请改用MODIS/061/ MOD11A1
为什么我无法在下面给出的代码中下载 2024 年的数据?看起来有效期到 2022 年 11 月。你能帮我吗?原创 2024-02-21 15:30:00 · 1678 阅读 · 0 评论 -
GEE案例——如何计算NDVI与逐月降水的相关性分析?
NDVI(Normalized Difference Vegetation Index)是一种用来衡量植被覆盖程度的指数,可以通过遥感数据计算得到。而降水是植被生长的重要因素之一,因此研究NDVI与降水的相关性分析有助于了解植被生长与降水的关系。下面将介绍如何计算NDVI与逐月降水的相关性分析。数据获取与预处理 首先需要获取相应的NDVI和降水数据集。NDVI数据通常可以通过遥感卫星获取,而降水数据可以从气象台站或卫星数据获得。获取到的数据需要进行预处理,包括去除缺失值、异常值的处理等。原创 2024-02-23 10:00:00 · 2833 阅读 · 0 评论 -
GEE联系——正确加载指定区域的sentinel-1和2的影像
本教程主要的目的是我们需要利用哨兵数据进行分别可视化,如何选取指定的研究区进行加载。哨兵1号和哨兵2号是两个重要的数据保护和安全解决方案。它们被广泛应用于现代计算机系统和网络环境中,以保护数据的完整性、可用性和机密性。下面将详细介绍哨兵1号和哨兵2号的特点、功能以及它们在数据安全领域的应用。哨兵1号是一种数据保护和备份解决方案,它提供了可靠的数据存储和灾难恢复功能。哨兵1号具有高可用性和高性能,能够在故障发生时自动切换到备用系统,确保数据的连续性。原创 2024-02-16 11:00:00 · 1164 阅读 · 0 评论 -
GEE重投影——NICFI数据集重投影到WGS84坐标
遥感影像的重投影是将一幅影像从一个地理坐标系统转换到另一个地理坐标系统的过程。在遥感应用中,重投影非常重要,因为不同的遥感影像可能来自于不同的遥感传感器或不同的地理坐标系统,而在进行数据分析和集成时,需要保证所有影像在同一地理坐标系统下。重投影的过程涉及到将原始影像上的像素点重新映射到目标坐标系统上的像素点。这一过程需要使用到原始影像的地理信息和两个坐标系统之间的转换参数。原创 2024-02-14 09:30:00 · 2442 阅读 · 0 评论 -
GEE——如何利用降水数据绘制指定区域长时间序列的降水分布图和提取每个月(逐月)的降水平均数据
如何利用降水数据绘制指定区域长时间序列的降水分布图和提取每个月的指定降水数据?这里我们首先要做的就是选择指定的数据,进行指定年份数据的筛选,然后进行长时序数据加载,然后提取研究区内每个月指定的降水平均值,最后进行下载到谷歌云盘。其中影像集合中的每个影像都是利用map的函数来进行映射,最后来获取每个月的平均降水数据。原创 2024-02-06 10:30:00 · 1606 阅读 · 0 评论 -
GEE案例——如何利用Landsat数据中的温度数据进行指定区域不同年份的温度计算
如何利用Landsat数据中的温度数据进行指定区域不同年份的温度计算Landsat卫星是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合发起的一个地球观测计划,旨在获取高质量的地球表面影像数据。这些影像数据包括可见光、红外线和热红外线波段的信息。其中,热红外线波段提供了地表温度信息,可以用于计算不同年份和不同地区的温度。利用Landsat数据进行温度计算需要进行以下步骤:1. 数据获取:首先,在USGS的Landsat数据存档中选择合适的影像数据。原创 2024-01-28 16:09:49 · 758 阅读 · 0 评论 -
GEE数据集影像统计——如何统计不同数据集之间的影像数量?
NASA/HLS/HLSL30/v002 仅包括 L30 数据(来自 Landsat 8 的数据),因此您可以看到与 LANDSAT/LC08/C02/T1_TOA 类似数量的图像。图像数量上的细微差别可能是由于 "跟进处理 "和 "回溯处理 "造成的,前者使用的是 L1 TOA 实时数据(RMSE原创 2024-01-28 14:58:26 · 1154 阅读 · 0 评论 -
GEE——如何正确使用where函数将NDVI等指数进行分类
我使用WHERE函数将NDVI指数分为5类,输出只给出一个数字,但不显示每一类的面积。原创 2024-01-31 14:15:00 · 1309 阅读 · 0 评论 -
GEE影像数量查询——Sentinel-1数据集逐月的可用影像数量和影像加载
Sentinel-1是欧洲空间局(ESA)的一组合成孔径雷达(SAR)卫星,旨在提供全球范围内的地表观测。Sentinel-1卫星系列使用微波雷达技术,能够实现全天候、全天时的地表监测,包括陆地和海洋。Sentinel-1卫星系列是ESA Copernicus计划的一部分,旨在提供免费和开放的地球观测数据。Sentinel-1卫星系列采用C波段合成孔径雷达(SAR)技术,这意味着它使用的是微波辐射而不是可见光来进行观测。原创 2024-01-22 19:00:00 · 991 阅读 · 0 评论 -
GEE不确定性评价——谷歌地球引擎的不确定性量化(哨兵-1、哨兵-2 L1C 和/或哨兵-2 L2A)
本 Github 代码库包含研究论文 "使用保形预测对地球观测中的概率机器学习进行不确定性量化 "的代码。它包括使用保形预测量化不确定性、为多个时间步长和空间交叉验证创建填隙无云图像合成的功能。在使用人工智能(AI)系统时,可能会出现不可靠的预测,给下游应用带来负面影响,尤其是在用于决策时。共形预测为不确定性量化提供了一个与模型无关的框架,可应用于任何数据集,无论其分布如何,均可进行事后分析。原创 2024-01-22 10:30:00 · 1349 阅读 · 0 评论 -
GEE指数——绿色覆盖指数Green Coverage Index (GCI)的计算
绿色覆盖指数(GCI)是另一种可用于植被研究的指数,是对传统 NDVI 的补充。它是一种新的植被指数,与其他相关指数一起,可帮助您评估植被的健康状况,并只突出那些由植物结构形成的要素。通过波段之间的简单关系,您可以在 ArcGIS、QGIS、gvSIG、SNAP、ENVI 或 LEOworks 等环境中计算 GCI。Green Coverage Index (GCI) 是一个衡量城市绿化覆盖率的指标。它通过评估城市中的绿地面积和绿化质量来衡量城市的环境可持续性和生态健康状况。原创 2024-01-16 14:00:00 · 1779 阅读 · 1 评论 -
GEE 影像下载——批量下载多源遥感影像(Landsat 8 C02 SR)光谱波段。光谱指数,缨帽变换和纹理特征以及SAR和地形数据(DEM)
本博客的主要目的是实现不同年份多源遥感影像的下载,最终下载的结果是一个单景影像集合的多源遥感波段影像,多波段的影像,不是影像集合。原创 2024-01-21 10:00:00 · 1939 阅读 · 2 评论 -
GEE时序——利用sentinel-2(哨兵-2)数据进行地表物候学分析(时间序列平滑法估算和非平滑算法代码)
哨兵-2A/B 串联卫星的空间分辨率高、重访时间长,有可能改进对陆地表面物候的检索。不过,生物群落和区域特征在很大程度上限制了陆表物候学算法的设计。在北极地区,这种生物群落特有的特征包括长期积雪、持续云层覆盖和生长季节短暂。在此,我们评估了哨兵-2 获取北极高分辨率 LSP 地图的可行性。我们通过在谷歌地球引擎(GEE)中简单实施阈值法,提取了 2019 年和 2020 年的季节开始和结束时间(分别为 SoS 和 EoS)。我们发现哨兵-2 和 PhenoCam 的指标之间具有高度的相似性;原创 2024-01-17 09:00:00 · 2783 阅读 · 5 评论 -
GEE——土地利用分类种两个矢量集合中不同列进行相减的方式(利用join进行连接处理)
问题:我有两个具有相同 ID 的特征集,我想从第二个特征集中减去第一个特征集的表格单元格。我使用了这个函数,但它计算的是表 1 中第一个元素与表 2 中其他元素的减法。我想逐个单元格计算减法。第一个表格中 id 为 1 的单元格减去第二个表格中 id 为 1 的单元格,2x2、3x3...有人能帮我完成这项任务吗?使用它们旨在从两个集合中查找匹配的元素。原创 2024-01-07 09:00:00 · 1003 阅读 · 0 评论 -
GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)
之前发表了两篇关于影像修复的文章,并且制作了APP,大家可以去看以下的两篇博客来了解具体的研究内容和整个方法的有效性:Google Earth Engine APP——影像条带色差、色调不均匀等现象解决方案Landsat5 NDWI Image Restoration APP_ndwi不能识别泛红水体怎么办-CSDN博客基于GEE云平台一种快速修复Landsat影像条带色差的方法_gee平台-CSDN博客Returns the image collection containing the given im原创 2023-12-12 19:02:52 · 652 阅读 · 1 评论 -
GEE好文推荐——利用样本点迁移方法快速实现全球范围内1984年至今基于Landsat影像的土地分类
长时间系列土地覆盖分类信息是对城市扩张、植被变化和碳循环等方面的科学研究的基础。云计算平台的快速发展,如谷歌地球引擎(GEE),以及从陆地卫星和哨兵-2中对多源卫星图像的访问,使机器学习算法在图像分类中的应用成为可能。在此,我们使用随机森林算法,基于从2022年获得的图像中选择固定的土地分类样本点,以及样本点的年光谱差异,快速实现不同尺度的时间序列土地覆盖分类。利用合成孔径雷达(SAR)和数字高程模型(DEM)等多源遥感数据,提高了分类精度。原创 2023-12-13 17:11:33 · 2243 阅读 · 30 评论 -
GEE中Landsat重大改变——Landsat Collection 1 到 Collection 2 影像集合迁移
Landsat Collection 1 到 Collection 2 迁移Landsat Collection 1 到 Collection 2 迁移Collection 1 数据切换 到 Collection 2 数据的说明。自 2022 年以来,集合 2 已在 Earth Engine 中完全可用,。Landsat Collection 1 已弃用,鼓励所有用户尽快迁移到 Collection 2。每个代表了使用一致的方法和例程处理的图像档案的一个版本。随着系统和处理算法的改进,新的集合会产生。原创 2023-12-09 00:05:58 · 1541 阅读 · 0 评论 -
GEE——利用Landsat系列数据集进行1984-2023EVI指数趋势分析
利用Landsat系列数据集进行1984-2023EVI指数趋势分析其主要目的是进行长时序的分析,这里我们选用EVI指数,然后进行了4个月的分析,查看其最后的线性趋势以及分布状况。原创 2023-12-07 20:12:00 · 847 阅读 · 0 评论 -
Google Earth Engine——如何批量下载海洋盐度温度数据
之前写过一篇关于海洋温度数据集的博客混合坐标海洋模式(Hybrid Coordinate Ocean Model,HYCOM)是一个数据同化混合等值-Σ-压力(广义)坐标海洋模式。EE 中的 HYCOM 数据子集包含盐度、温度、速度和海拔等变量。这些数据是根据南纬 80.48 度和北纬 80.48 度之间统一的 0.08 度纬度/经度网格内插的。盐度、温度和速度变量已插值到 40 个标准 z 级。原创 2023-11-30 09:00:00 · 1380 阅读 · 0 评论 -
GEE——sentinel-2新的去云方式(Cloud Score+ S2_HARMONIZED V1数据集)及linkCollection()函数的使用,结果优于现有QA波段去云(附代码)
简介:GEE今天的峰会上提出了一个非常好的去云的影像,这个数据集已经再gee中进行了公开,并且只需要通过一行代码即可运行获取没有云的高清影像,相较于QA去云的操作,整体山给效果更加,特别是对于很多地区常年被云雾覆盖,很难获取无云影像,本教程通过一个简单的案例来展示如何做到高清无云影像的获取,从而提高后续土地分类的精度或者其它后续影像操作。原创 2023-11-01 22:55:12 · 2282 阅读 · 8 评论 -
GEE——Publisher Data Catalogs发布者数据目录
发布者数据目录由数据集发布者策划,供更大范围的 Google 地球引擎社区使用,并作为地球引擎资产集公开共享。这里是GEE团队简政放权的一个过程,也就是说这些数据集的后续更新和维护并不由GEE团队负责。通过挪威国际气候与森林倡议(NICFI),用户现在可以访问 Planet 高分辨率、可分析的全球热带地区镶嵌图,以帮助减少和扭转热带森林的损失,应对气候变化,保护生物多样性,促进非商业用途的可持续发展。如发现错误,请联系澳大利亚地球科学组织,或查看澳大利亚地球科学组织目录中的更多数据集。原创 2023-11-01 21:10:35 · 219 阅读 · 0 评论 -
GEE、PIE和AI Earth平台进行案例评测:NDVI计算,结果差异蛮大
PIE获取北京市获取某一个区域的区域的NDVI平均值,但是结果却显示没有,只能通过加载图层点击图层上的点获取某一个点的NDVI值,而且这里用到区域统计使用的函数仅有min,max,sum计算,而使用mean计算,就没有结果。本文主要是通过对比GEE、PIE和AI Earth平台,主要是计算不同平台,同一个NDVI的均值计算,我们已测试结果如何。对特定区域的所有像素进行统计,返回结果为一个JSON对象;目前可完成最大、最小和求和统计计算。默认是影像第一个波段的范围。统计类型,包括最大值、最小值和求和。原创 2023-06-03 10:30:00 · 1515 阅读 · 3 评论 -
Google Earth Engine(GEE)——ee.image.cumulativeCost函数的使用(多波段影像值变为0)
如果是真的,则使用半径为6378137.0的球形地球沿弯曲表面的大地距离。如果是错误的,则使用地图投影的2D平面中的欧几里得距离(更快但准确)。代表穿越每个像素的成本的图像。也就是你输入这么多波段,可以选择其中一个波段,作为映射区域,然后让其去掉该区域影像值,让其变为0。重点介绍一下这个函数,主要是是为了去除多波段影像中的其中多波段影像值全部变为0,根据包含成本遍历每个像素的成本和包含源位置的图像的成本计算累积成本图。与0不同的像素值不同,定义了一个源像素。每个输出频段代表相应输入成本频段的累积成本。原创 2023-03-26 16:30:00 · 465 阅读 · 0 评论 -
如何正确学习GEE(Google Earth Engine)?含学习资源链接
共有17个专栏,除了GEE 外,还有AI Earth 、PIE等其它的遥感云计算介绍,建议初学者可以从GEE训练教程或者Google Earth Engine,如果要有更高级的需求可以查看GEE APP专栏和GEE 案例分析。除了我个人的博客之外,还有其它很多相关博客,其实大家想知道如何更简单的找到这些博客,直接百度搜多就行了,你直接按照你的要求搜索就可以看到很多,久而久之你就可以累积到很多博主。官方文档和教程:GEE 的官方网站提供了大量的文档和教程,可以帮助您快速了解 GEE 的基本概念和功能。原创 2023-01-29 00:00:00 · 1620 阅读 · 0 评论