SDV简介
Synthetic Data Vault (SDV)是一个专为表格数据合成设计的Python库,旨在成为您的一站式解决方案。SDV利用多种机器学习算法从真实数据中学习模式,并在生成的合成数据中模拟这些模式。作为The Synthetic Data Vault项目的一部分,SDV由DataCebo公司开发和维护,目前已成为合成数据生成和评估领域最大的生态系统。
主要特性
SDV提供了以下核心功能:
1. 使用机器学习创建合成数据
SDV提供多种模型选择,从经典的统计方法(如GaussianCopula)到深度学习方法(如CTGAN)。您可以生成单表数据、多个关联表数据或序列数据。
2. 评估和可视化数据
SDV允许您通过多种指标比较合成数据与真实数据。您可以诊断问题并生成质量报告以获得更多洞察。
3. 预处理、匿名化和定义约束
SDV让您可以控制数据处理过程以提高合成数据质量,选择不同类型的匿名化方法,并以逻辑约束的形式定义业务规则。
快速入门
让我们通过一个简单的例子来了解SDV的基本用法:
- 首先,加载一个演示数据集:
from sdv.datasets.demo import download_demo
real_data, metadata = download_demo(
modality='single_table',
dataset_name='fake_hotel_guests')
这个数据集描述了一家虚构酒店的客人信息。