NVIDIA DALI简介
NVIDIA数据加载库(DALI)是一个GPU加速的库,用于加速深度学习应用的数据加载和预处理。它提供了一系列高度优化的构建模块,用于加载和处理图像、视频和音频数据。DALI可以作为流行深度学习框架中内置数据加载器和数据迭代器的便携式替代品。深度学习应用需要复杂的多阶段数据处理管道,包括加载、解码、裁剪、调整大小等多种增强操作。这些数据处理管道目前主要在CPU上执行,已成为限制训练和推理性能和可扩展性的瓶颈。
DALI通过将数据预处理卸载到GPU来解决CPU瓶颈问题。此外,DALI依赖于自己的执行引擎,旨在最大化输入管道的吞吐量。预取、并行执行和批处理等功能对用户来说是透明的。
DALI的主要特性
DALI具有以下突出特点:
- 易于使用的函数式Python API
- 支持多种数据格式,如LMDB、RecordIO、TFRecord、COCO、JPEG、JPEG 2000、WAV、FLAC、OGG、H.264、VP9和HEVC等
- 可在流行的深度学习框架间移植,包括TensorFlow、PyTorch、PaddlePaddle和JAX
- 支持CPU和GPU执行
- 可跨多个GPU扩展
- 灵活的图形结构允许开发人员创建自定义管道
- 可通过自定义操作符扩展以满足特定需求
- 加速图像分类(ResNet-50)、目标检测(SSD)工作负载以及ASR模型(Jasper、RNN-T)
- 通过