NFA、DFA模拟、正则表达式转NFA、NFA转DFA、DFA转正则、DFA最小化的python实现项目

各类自动机模拟实现

项目地址: https://github.com/HuiyuanYan/automaton_simulation
注:这个github链接必须复制重新在浏览器打开,不能通过CSDN跳转,否则会挂掉。如果github打不开的话可以参考我这篇文章加速:加速github
也可以在CSDN的gitlab打开: https://gitcode.net/m0_56745306/automaton_simulation
(但有可能更新不及时)

如果喜欢请给个关注和STAR吧WWW

一、概述

本项目基于《编译原理》第二版和《自动机理论、语言和计算导论》第三版,以及网络资料,实现包括DFA、NFA在内的多种自动机,使用python语言进行编程,以期加深对自动机的理解。

二、项目结构

├─picture # 存放生成的DFA/NFA图片
├─src #存放源代码
│  ├─automata #自动机实现代码
│  └─container #使用到的其他容器实现代码
└─test #测试文件

三、项目环境

  • Python 3.9.7
  • graphviz version 6.0.1

四、项目运行

进入test文件夹执行test_all.py可运行全部测试样例。

五、实现原理

1.DFA

1.1 DFA的基本实现

DFA(Deterministic Finite Automaton) \text{DFA(Deterministic Finite Automaton)} DFA(Deterministic Finite Automaton)的形式化定义如下:

一个确定型有穷自动机包括:

  1. 一个有穷的状态集合,通常记作 Q Q Q
  2. 一个有穷的输入符号集合,通常记作 Σ \Sigma Σ
  3. 一个转移函数,以一个状态和一个输入符号作为变量,返回一个状态。转移函数通常记作 δ \delta δ
  4. 一个初始状态,是 Q Q Q中状态之一。
  5. 一个终结状态或接受状态的集合 F F F。集合 F F F Q Q Q的子集合。

通常用五元组来讨论和表示 D F A DFA DFA:
A = ( Q , Σ , δ , q 0 , F ) 。 A=(Q,\Sigma,\delta,q_0,F)。 A=(Q,Σ,δ,q0,F)

src\automata\DFA.py中,定义了DFA类,定义了它的各个组成:

self.__Q = [] # states
self.__alphabet = []
self.__deltas = {}
self.__q0 = '' # start state
self.__finish_states = [] # finish state

可以通过接口函数add_state/add_states, set_alphabet, set_deltas/add_delta, set_q0, set_finish_states对它们分别进行设置。

1.2 DFA运行

DFA是通过接受状态来接受语言的,即定义 DFA A \text{DFA A} DFA A的语言。这个语言记作 L ( A ) L(A) L(A),定义为:
L ( A ) = { w ∣ δ ^ ( q 0 , w ) ∈ F } L(A) = \{w|\hat{\delta}(q_0,w) \in F\} L(A)={wδ^(q0,w)F}
也就是说,语言 A A A是让初始状态 q 0 q_0 q0通向接受状态之一的串 w w w的集合。如果对某个 DFA A \text{DFA A} DFA A来说 L L L L ( A ) L(A) L(A),那么就说 L L L正则语言

DFA \text{DFA} DFA模拟的算法为:

s = s0;
c = nextChar();
while(c! = eof){
    s = move(s,c);
    c = nxtChar();
}
if (s in F) return true;
else return false;

算法实现见函数DFA.run(str)。可以通过设置参数verbose = True来打印每一步的过程。

  • Example:
d = DFA()
d.add_states(['q0','q1','q2','q3'])
d.set_alphabet(['0','1'])
d.set_q0('q0')
d.set_finish_states(['q3'])
d.set_deltas({'q0':[('0','q1')],
              'q1':[('1','q2')],
              'q2':[('0','q3')],
})
assert d.run('010') == True
1.3 DFA最小化

DFA最小化对于每个DFA,求出在接受相同语言的任意DFA中具有最少状态数的等价DFA,且该最小DFA是唯一的

算法的大致思路为:

1. 排除所有不能从初始状态到达的状态
2. 把剩下的状态划分为块,同一块中的状态都是等价的,并且不同块中的两个状态一定不等价。

排除不可达状态,可以使用深度优先遍历,从初始状态开始,找到所有可达节点,并删除不可达节点及其转移(transition)。

等价块划分采取“填表算法”(见《自动机理论、语言和计算导论》第二版P107),具体步骤为:

1. 新建一张"n*n"的表,其中n为消除不可达状态后的状态数。实际上,由于对称性,只需要使用对角线下半部分的表即可。

2.将所有状态按顺序编号0,1,2...,并对应于表的下标。

3.标记结束状态与其他状态不等价(即可区分,填对应表项为1)。

4.对表进行迭代操作,每次迭代遍历每个表项t[i][j](i<j),若存在一个字母表中的字符c,可以将状态i,j区分,即状态i和状态j在c上转移的下一个状态被标记为不等价,那么标记t[i][j]可区分。

5.进行4中的迭代操作,直至表再无更新。

6.将表中未被标记的状态分别合并为一个状态(这里用到了并查集),重新设置状态,并根据原来的转移函数设置新转移函数。

代码见src\automata\DFA.pyDFA.minimize()函数。

1.4 从DFA到正则表达式

通过归纳构造的方式从 DFA \text{DFA} DFA构造正则表达式。

将DFA A中的每个状态编号(0,1,2,…,n)用 R i j k R_{ij}^{k} Rijk作为正则表达式的名字,属于该正则的串 w w w满足: w w w是从 A A A中从状态 i i i到状态 j j j的路径的标记,且这条路径没有经过编号大于 k k k的中间节点。

1
0
0,1
1
2,finish
start

例如,对于上面的DFA, R 12 ( 0 ) = 0 R_{12}^{(0)}=0 R12(0)=0,即 0 0 0这个串满足能够从状态1到状态2,且中间没有编号大于0的节点(中间不经过任何节点)。

那么最终我们需要求的DFA的正则表达式则为 R s t a r t _ s t a t e , a l l _ e n d _ s t a t e s ( n ) R_{start\_state,all\_end\_states}^{(n)} Rstart_state,all_end_states(n) n n n为状态数,表示满足可以从开始状态到所有结束状态,中间可以经过任意节点的正则表达式。

下面为具体步骤:

归纳的基础为,当 k = 0 k=0 k=0时,由于所有状态的编号都大于等于1,所以这时对路径的限制为:路径根本没有中间状态。只有两种路径满足这样的条件:

  1. 从状态 i i i j j j的一条弧。
  2. 只包含某个顶点 i i i的长度为0的路径。

i ≠ j i\not=j i=j时,只有情形1是可能的。检查该DFA,找到所有满足的输入符号 a i a_i ai,使得在 a i a_i ai上存在从 i i i j j j的转移。

  • 如果不存在这样的符号, R i j ( 0 ) = ∅ R_{ij}^{(0)}=\empty Rij(0)=

  • 如果恰好有一个这样的符号 a a a,则 R i j ( 0 ) = a R_{ij}^{(0)}=a Rij(0)=a

  • 如果同时有多个符号 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an满足,则 R i j ( 0 ) = a 1 + a 2 + . . . + a n R_{ij}^{(0)}=a_1+a_2+...+a_n Rij(0)=a1+a2+...+an

i = j i=j i=j时,合法路径为长度为0的路径(不进行转移)和从 i i i到其自身的环。长度为0的路径正则表达式记为 ϵ \epsilon ϵ,环的正则表达式则根据上述规则确定。最终 R i i ( 0 ) = ϵ + a 1 + a 2 + . . . + a n R_{ii}^{(0)}=\epsilon+a_1+a_2+...+a_n Rii(0)=ϵ+a1+a2+...+an

k > 0 k>0 k>0时,从 i i i j j j的路径不经过比 k k k高的状态,考虑如下两种情形:

  1. 该路径不经过状态 k k k,此时 R i j ( k ) = R i j ( k − 1 ) R_{ij}^{(k)}=R_{ij}^{(k-1)} Rij(k)=Rij(k1)
states
i
j
k
  1. 该路径至少经过状态 k k k一次。此时可以把路径分为三段: R i k ( k − 1 ) R_{ik}^{(k-1)} Rik(k1) ( R k k ( k − 1 ) ) ∗ ( 表示在k处自身转移了0到多次 ) (R_{kk}^{(k-1)})^*(\text{表示在k处自身转移了0到多次}) (Rkk(k1))(表示在k处自身转移了0到多次) R k j ( k − 1 ) R_{kj}^{(k-1)} Rkj(k1)
states
loop
states
i
j
k

故而有 R i j ( k − 1 ) = R i j ( k − 1 ) + R i k ( k − 1 ) ( R k k ( k − 1 ) ) ∗ R k j ( k − 1 ) R_{ij}^{(k-1)}=R_{ij}^{(k-1)}+R_{ik}^{(k-1)}(R_{kk}^{(k-1)})^*R_{kj}^{(k-1)} Rij(k1)=Rij(k1)+Rik(k1)(Rkk(k1))Rkj(k1)

最终对于所有 i i i j j j,都可以得到 R i j ( n ) R_{ij}^{(n)} Rij(n)。假设状态1为初始状态,接受状态集合为 { j 0 , j 1 , . . . j n } {\{j_0,j_1,...j_n\}} {j0,j1,...jn},所有表达式之和 ∑ R 1 j i ( n ) \sum R_{1j_i}^{(n)} R1ji(n)即为自动机的语言。

详细代码见src\automata\DFA.py\DFA.to_regex(re)

例子:

d = DFA_SRC.DFA()
d.set_alphabet(['0','1'])
d.add_states(['q0','q1'])
d.set_q0('q0')
d.set_finish_states(['q1'])
d.set_deltas(
    {
        'q0':[('0','q1'),('1','q0')],
        'q1':[('0','q1'),('1','q1')]
    }
)
print(d.to_regex())

对于该DFA:

1
0
0,1
q0
q1,finish
start

输出的结果为
0 + ( ε + 1 ) ( ε + 1 ) ∗ 0 + ( 0 + ( ε + 1 ) ( ε + 1 ) ∗ 0 ) ( ε + 0 + 1 ) ∗ ( ε + 0 + 1 ) 0+(ε+1)(ε+1)^*0+(0+(ε+1)(ε+1)^*0)(ε+0+1)^*(ε+0+1) 0+(ε+1)(ε+1)0+(0+(ε+1)(ε+1)0)(ε+0+1)(ε+0+1)

化简后为 10 ( 0 + 1 ) ∗ 10(0+1)^* 10(0+1)

本功能并未实现对得到正则表达式的化简,需要自己手动进行化简。

2.NFA

2.1 NFA的基本实现

NFA(NonDeterministic Finite Automata) \text{NFA(NonDeterministic Finite Automata)} NFA(NonDeterministic Finite Automata)的形式化定义如下:

一个 NFA A \text{NFA A} NFA A可形式化表述为:

A = ( Q , Σ , δ , q 0 , F ) A=(Q,\Sigma,\delta,q_0,F) A=(Q,Σ,δ,q0,F)

其中:

  1. Q Q Q是一个有穷的状态集合。
  2. Σ \Sigma Σ是一个有穷的输入符号集合。
  3. q 0 q_0 q0是初始状态,属于 Q Q Q
  4. F F F是终结(或接受)状态的集合,是Q的子集合。
  5. 转移函数 δ \delta δ是一个以 Q Q Q中状态和 Σ \Sigma Σ中的一个输入符号作为变量,并返回 Q Q Q的一个子集合的函数。

同样地,在NFA.py中也保留了与DFA.py中类似的成员和接口函数。

需要注意的是,NFA.set_deltas中的参数类型与DFA中有所不同。

2.2 NFA运行

NFA的模拟算法为:

S = ε-closure(s0);
c = nextChar();
while (!c = eof){
    S = ε-closure(move(S,c));
    c = nextChar();
}
if(S ∩ F != Empty) return true;
else return false;

算法实现见函数NFA.run(str)。可以通过设置参数verbose = True来打印每一步的过程

2.3 从NFA到DFA

从NFA到DFA的转换,使用子集构造法来实现。算法的描述为:

Dstates = [];
Dtran = {};
Dstates.append([ε-closure(s0),unmarked]);
while there is an unmarked state T in Dstates:
    Mark T;
    for every ch in alphabet:
        U = ε-closure( move(T,ch) );
        if U not in Dstates:
            U.append([Dstates,unmarked]);
        Dtran[T,ch] = U;

然后根据DstatesDtrans重新设计DFA即可。

算法实现见函数NFA.to_DFA()

2.2 从正则表达式到NFA

本项目还实现了从基本正则表达式(包含的运算符号有 “ | ”(或)、“ * ”(闭包)、concat(连接))到NFA的转换。

采用的算法是汤普森构造法

具体步骤为:

1. 将输入的正则表达式转换为后缀表达式,并添加相应的连接符。(见代码NFA.regex_to_NFA().infix_to_postfix(regex))。

2. 根据获取的后缀表达式,利用汤普森构造法构造新NFA。(包含了对各个状态重新编号的过程)

实现见代码NFA.regex_to_NFA()

3.自动机的图形表示

采用pygraphviz包利用grpahviz软件画图。

使用自动机下的draw方法进行调用画图。

默认存储路径为picture文件夹,可以在config.py中进行修改。

六、参考

https://deniskyashif.com/2019/02/17/implementing-a-regular-expression-engine/

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值