AI作业5-深度学习基础
1.人工智能、机器学习、深度学习之间的关系
机器学习是实现人工智能的方法,而深度学习是机器学习算法中的一个
2.神经网络与深度学习的关系
深度学习是基于神经网络为模型的一种机器学习方法。神经网络是一种人工智能技术,神经网络由输入层,隐藏层和输出层组成。每一层都由许多神经元组成,并且神经元之间通过权重相连接,而神经网络通过学习调节不同样本的权重来处理输入信息并输出结果。深度学习,是一种使用多层神经网络来进行机器学习的方法。
3.“深度学习”和“传统浅层学习”的区别和联系
传统浅层学习采取分段学习的手段,来完成机器学习。浅度学习是通过分段学习获取关键信息点,并对这些获取信息点进行表达,然后对信息点的表达向量进行聚类,将学习所得的信息点组成词典。而深度学习是采取从输入端到输出端完整的学习方式来完成学习任务。从输入端输入后,样本通过卷积,池化,反向传播后得到原始数据的特征表达,而基于特征表达,在深度学习中对其进行识别和分类,然后对特征表达进行分析与处理。
4.神经元、人工神经元
神经元:也称神经元细胞,是生物神经西永最基本的结构和功能单位。而人工神经元,可以看作为一种仿生产物,人工神经元通过模仿生物体神经元来实现近似功能,神经元是一个多输入单输出的信息处理单元、神经元输出分为兴奋性输入和抑制性输入、神经元具有空间整合特性和阈值特性、神经元的输入与输出存在着固定的时滞。和神经元一样,多个人工神经元相互连接就构成了人工神经网络。
5.MP模型
MP模型是按照生物神经元的结构和工作原理构造的简化抽象模型。MP模型由多个输入节点和连接权值组成,但每个输入节点为bool值,值对应输出一个输出输出节点。
6.单层感知机 SLP
单层感知机是机器学习中最为基础的方法之一,也可认为是一种最为简单的神经网络,其逻辑结构与逻辑回归是一致的,都是多个输入,与权值相计算加上偏置值经过激活函数得到输出。
7.异或问题 XOR
异或问题,对于异或逻辑运算来说,相同值经过异或运算结果输出0,如果不同值经过异或运算结果输出为1.异或问题的产生是由于根据异或产生的结果,分为两类,而这两类输出无法用较为明显的界限或一条“线”来将其分开,分为两块相互独立的区域。
8.多层感知机 MLP
多层感知机可由单层感知机相互连接来得到,而、多层感知机是深度神经网络的基础算法。在多层感知机的结构中,层与层之间是全连接的,多层感知机中最底层是输出层,中间是隐藏层,最后则是输出层。
9.前馈神经网络 FNN
在神经网络中,最基本的结构为神经元,而将大量神经元分为不同的组,每组作为一个网络层,然后层层全连接,这样就形成了前馈神经网络。而前馈神经网络的原理,即每两层网络层都得全连接,而每一层的神经元接收到上一层的神经元信号并传递到下一层。
10.激活函数 Activation Function
激活函数一般都是非线性的,用于对输入函数进行非线性变换,如Sigmoid函数,在神经网络中引入非线性,从而强化网络的学习能力。
11.为什么要使用激活函数?
在神经网络中,数据的传输不符合现在网络中常见的大多数数据,而使用激活函数可以使神经网络符合常见的大多数数据分布并强化网络的学习能力。
12.常用激活函数有哪些?
Sigmoid函数、Tanh函数、ReLU函数、SoftMax函数等
13.均方误差和交叉熵损失函数,哪个适合于分类?哪个适合于回归?为什么?
均方误差损失函数适用于回归,交叉熵损失函数适用于分类。因为均方误差损失函数,通过预测计算预测值与真实值间的误差的平方来衡量模型的优劣,适用于回归,而交叉熵损失函数通过概率分布q来表达概率分布p的困难程度,适用于分类。