机器学习
文章平均质量分 71
模拟IC和AI的Learner
如果你不能用可视化的方式看到事情的过程和结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。
展开
-
【王木头】最大似然估计、最大后验估计
本质区别最大似然估计MLE只依赖数据的似然,不使用先验,是一种频率派的估计方法。最大后验估计MAP同时考虑数据的似然和参数的先验信息,是一种贝叶斯派的估计方法。总结公式最大似然估计MLE最大后验估计MAP在有先验信息的情况下,MAP 能够更好地利用先验信息对估计进行约束,而 MLE 则完全依赖观测数据。t=O83At=O83AX%5Ctheta%5Cthetap%28X%29贝叶斯解释“L1和L2正则化”,本质上是最大后验估计。如何深入理解贝叶斯公式?原创 2024-11-11 01:49:22 · 531 阅读 · 0 评论 -
【王木头 · L1、L2正则化】三个角度理解L1、L2正则化的本质
小权重抑制高频成分的原因非线性结构的影响:小权重限制了神经网络的非线性拟合能力,尤其对高频变化的拟合能力影响更大。平滑效果:正则化引入小权重会迫使模型选择更平滑的拟合方式,从而更容易保留低频结构,抑制高频噪声。相对抑制:虽然低频成分也被削弱,但相比高频成分,它受到的影响较小,从而使得模型能够聚焦于数据的主要趋势。类似于低通滤波:小权重类似于低通滤波器,对频率越高的成分抑制越强。综上所述,小权重确实抑制了所有频率的成分,但对高频成分的抑制更为显著,从而达到了抑制噪声和提升泛化能力的效果。原创 2024-11-10 23:14:18 · 609 阅读 · 0 评论 -
【王木头·梯度下降法优化】随机梯度下降、牛顿法、动量法、Nesterov、AdaGrad、RMSprop、Adam
动量法,即类似于pid中的积分项,有抑制震荡、加快收敛速度的功能梯度下降时如果出现发生震荡或学习速率慢,可采用动量法优化路径,如图橙色线在水平维度学习速率慢,在竖直维度震荡,采用动量法优化后如图中绿色线。动量法的核心思想是通过对梯度的加权平均(或者说对梯度的动量)来更新模型的参数。具体来说,它将梯度更新中的历史信息考虑进来,从而避免了在局部极小值和鞍点附近的振荡,并且在某些方向上能够加速收敛。动量法的更新公式如下:表示第次迭代的动量(即前几次梯度的累积);原创 2024-11-09 01:57:06 · 718 阅读 · 0 评论 -
【王木头】sigmoid和softmax有什么区别,softmax的本质是最大熵?
本文从sigmoid和sofmax的形式是因为最大熵原理,从而分析到机器学习的本质,使我对机器学习的理解更加深入。原创 2024-11-08 11:03:24 · 698 阅读 · 0 评论 -
【贝叶斯公式】贝叶斯公式、贝叶斯定理、贝叶斯因子,似然比
贝叶斯公式的本质在于它提供了一种。具体来说,贝叶斯公式描述了后验概率(即在观察到某些证据后更新的概率)与先验概率(即在没有观察证据之前的概率)以及似然性(即在给定某种假设条件下观察到证据的概率)之间的关系。贝叶斯公式可以表示为:其中:P(A∣B) 是,即在事件 B 发生后,事件 A 发生的概率。P(A) 是,即在观察到事件 B 之前,事件 A 发生的概率。P(B∣A) 是,即在事件 A 发生的条件下,事件 B 发生的概率;P(B) 是边际概率,即事件 B 发生的总概率。本质:贝叶斯公式的。原创 2024-11-05 17:14:10 · 440 阅读 · 0 评论 -
【王木头·从感知机到神经网络】
根据身高体重判断胖瘦的感知机。1、根据已知样本训练出一条直线,用于对非训练样本进行分类,这条直线就是感知机模型。三维情况下感知机模型是一个平面。原创 2024-10-12 21:48:54 · 720 阅读 · 0 评论 -
【机器学习】绘图中使用plt(图像全局)和axes对象(局部子图)的区别
使用axes对象和plt的区别主要体现在图形绘制的灵活性和控制能力上。原创 2024-09-27 14:09:42 · 315 阅读 · 0 评论 -
【线性代数】正定矩阵,二次型函数
本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。原创 2024-09-07 17:19:06 · 1361 阅读 · 0 评论 -
【几何角度】感知机
本质:将n维空间中的一些点线性投影到一维,在一维轴上找一个阈值对原点进行二分类。原创 2024-05-28 17:24:03 · 359 阅读 · 0 评论 -
【机器学习】二分类模型评估方法大全
曲线是二元分类中的常用评估方法它与精确度/召回曲线非常相似,但ROC曲线不是绘制精确度与召回率,而是绘制与要绘制ROC曲线,首先需要使用函数计算各种阈值的TPR和FPR我的理解:TPR和FPR既是两个类别分对的数量占实际类别总数的比例。原召回率既是一种类别分对的数量占实际类别总数的比例,索引TPR既是召回率。原创 2024-01-28 23:56:48 · 1716 阅读 · 2 评论 -
【sklearn练习】模型评估
2、使用交叉验证。原创 2024-01-11 01:37:36 · 1180 阅读 · 0 评论 -
【机器学习】模型保存
【代码】【机器学习】模型保存。原创 2024-01-12 01:10:06 · 470 阅读 · 0 评论 -
【sklearn练习】preprocessing的使用
scikit-learn 中的模块提供了多种数据预处理工具,用于准备和转换数据以供机器学习模型使用。这些工具可以帮助您处理数据中的缺失值、标准化特征、编码分类变量、降维等。以下是一些常见的PCA以上是一些模块中常见功能的示例用法。数据预处理是机器学习中非常重要的一步,它有助于提高模型的性能和稳定性。您可以根据您的数据和任务选择适当的预处理方法,并将其应用于您的数据,以确保数据准备得当。原创 2024-01-09 00:24:34 · 1291 阅读 · 0 评论 -
【sklearn练习】model常用属性和功能
scikit-learn 中的机器学习模型(estimator)通常具有一组常用属性和功能,这些属性和功能可以用于训练、评估和使用模型。:对于线性模型(如线性回归、逻辑回归、支持向量机等),这个属性表示模型的系数(权重),用于描述特征的重要性。:对于线性模型,这个属性表示模型的截距(偏置项)。:对于分类模型(如分类器),这个属性表示可能的类别或标签。:表示特征的数量。:对于分类模型,表示类别的数量。:对于多输出模型,表示输出的数量。:对于树型模型(如随机森林、梯度提升树),这个属性表示特征的重要性分数。原创 2024-01-08 15:39:11 · 760 阅读 · 0 评论 -
【sklearn练习】datasets的使用
以 "fetch" 开头的数据集,这些数据集通常不包含在 scikit-learn 的标准安装中,需要从远程服务器上下载。"load" 开头的数据集是一些较小且包含在 scikit-learn 标准安装中的示例数据集。这些数据集不需要从远程服务器下载,因为它们已经包含在 scikit-learn 的安装包中。"load" 开头的数据集是一些较小且包含在 scikit-learn 标准安装中的示例数据集。这些数据集不需要从远程服务器下载,因为它们已经包含在 scikit-learn 的安装包中。原创 2024-01-08 01:28:11 · 515 阅读 · 0 评论 -
【sklearn练习】鸢尾花
第二行:导入datasets数据集第三行:train_test_split 的作用是将数据集随机分配训练集和测试集。第四行:采用的模型是,KNeighborsClassifier,实现 k 最近邻投票的分类器。原创 2024-01-08 00:49:37 · 554 阅读 · 0 评论 -
【机器学习】scikit-learn工具包
数据集:API --> sklearn.datasets。examples:机器学习算法参考、可视化参考。专门做机器学习的python工具包,原创 2024-01-08 00:26:29 · 477 阅读 · 0 评论 -
【机器学习】线性回归·可运行源码
【代码】【机器学习】线性回归·可运行源码。原创 2024-01-03 17:34:35 · 656 阅读 · 1 评论