毋庸置疑,大模型的出现,给AI与金融的结合带来了更大的想象空间。我们就三大关键问题,分三篇文章,逐一展开的说一说:
1、梳理当前现状;
2、讨论未来趋势;
3、分析潜在影响。
相较于已在金融领域被广泛应用的传统判别式AI,大模型具有更强的通用泛化能力,能够处理复杂多样的信息理解、内容生成、多轮对话等任务需求,在金融领域存在较大的价值创造空间,据清华经管联合度小满等发布的《2024年金融业生成式AI应用报告》,大模型驱动的新商业模式有望为金融业带来3万亿规模的增量商业价值。
当前,金融机构主要将大模型应用于业务场景简单的非决策类环节,而在核心决策环节应用大模型仍面临较大挑战。
其中,大模型在支付、信贷、保险、财富管理等场景均有应用落地,但主要赋能对客服务、数据挖掘、业务助手等环节。而在对金融领域专业能力要求较高、涉及提供强金融投资建议、需要承担核心分析决策任务的业务场景和业务环节中,大模型的落地应用仍然存在较大约束和挑战、难以直接替代专业人员完成分析决策任务、更多作为辅助核心决策人员展业的助手。
从业务流程角度,大模型已开始赋能前台营销运营、信息搜集整理、中后台运营支持等环节;从业务场景角度,各类金融机构已开始尝试将大模型应用于支付、信贷、投顾、投研、保险等细分领域。
目前,国内外各类金融机构正在积极探索大模型落地场景,金融从业者对大模型工具的需求和使用也与日俱增。
在金融机构层面,根据英伟达发布的针对近400家金融机构的调研,43%的金融机构已经在使用大模型,另有55%金融机构正在研究并考虑应用大模型;在金融从业者层面,根据麦肯锡2023年调研数据,金融行业从业者反馈“在工作中常规使用大模型”、“在生活中常规使用大模型”和“在工作和生活中均常规使用大模型”的数量占比达42%,而这一比例在麦肯锡2024年调研数据中上升至48%。
具体来看,我们认为大模型在金融领域专业能力上仍有欠缺、难以提供涉及较严监管领域的复杂金融投资建议。
其中,在金融专业能力方面,由于金融服务存在时效性强、精确度高、专业壁垒高等特点,当前大模型在金融领域仍然存在专业短板、难以理清较为复杂的金融逻辑。
目前,金融行业中的大模型应用更多是发挥其通用泛化能力优势,赋能基础业务环节和通用场景,如交互对话、信息整理、内容生成等;同时,在提供金融服务方面,大模型目前已较能胜任常规的基础金融对话,如金融资讯、业务办理等,但在涉及专业度高、个性化强、业务复杂且涉及严监管领域的金融服务上,由于大模型能力有限、应用效果较差、且存在监管合规风险,大模型目前难以直接对客提供专业金融服务、仍需人工介入以满足服务质量和合规要求;
此外,在除金融专长仍有待提升之外,大模型亦面临生成内容不可控(如“幻觉”问题)、可解释性差等问题,应用大模型进行决策判断的可行性较低,且传统AI在部分金融分析决策任务中的应用(如风控授信、理赔定价等)已较为普及和成熟,大模型替代传统AI的意义不大,当前大模型主要负责赋能语义理解、信息归纳、内容输出等环节,并在部分任务场景中与传统AI互补协作以提升效率。
大模型赋能五大金融场景
大模型在支付、信贷、保险、投顾、投研五大金融业务场景中均存在落地应用。
在支付领域
大模型主要被用于提升支付机构的风险识别及反欺诈能力。其中,支付机构利用大模型获取、整理、分析多模态数据,丰富风控数据维度;此外,支付机构利用大模型生成大量合成数据以训练、优化现有风控及反欺诈算法。
在信贷领域
大模型主要应用于营销获客、客户运营、贷后催收、信息抽取整理环节。从而提升客户转化率、提高风险定价质效、减少贷款坏账损失,但目前仍不能直接应用于风控决策领域、无法替代现有决策系统。
在保险领域
大模型主要被应用于渠道营销、核保理赔、辅助产品研发等非核心决策环节。在渠道营销方面,大模型能够帮助涉及营销素材、作为智能客服向客户提供个性化的保险产品和推荐,以及作为Co-pilot赋能保险销售、为其提供个性化的保险销售建议和销售策略。
在核保理赔方面,大模型能够辅助人工核保、辅助收集理赔文件、审核真实性等。此外,在产品设计方面,大模型可帮助保险精算人员更好地洞察客户需求、市场趋势和风险特征,提升获取信息效率。
在财富管理(投顾)领域
大模型主要应用于营销获客、客户运营、产品推介等环节。其中,大模型能够赋能销售团队提升人效和服务、并有效识别潜在用户;同时,大模型亦有助于财富管理机构完善内容生态、提供更有温度的客户陪伴;此外,大模型亦能够赋能产品推介过程中的信息传递效率,让投顾更高效地洞察用户需求偏好、匹配合适的金融产品服务。
在资产管理(投研)领域
大模型通过对信息的高效收集、整合、加工,从而赋能投研及投资的“搜”、“读”、“算”、“写”、“用”五大环节的效率。其中,在搜索环节,大模型能够通过对多渠道、多模态信息进行整合,快速响应数据收集请求,提升投研投资活动获取信息的效率;在读取环节,大模型能够提炼核心内容,提升投研人员的信息处理效率;在运算分析环节,大模型能够辅助投资观点和决策的内容。
此外,在写作环节,大模型可以承担初步的投研材料生成工作,相关功能目前已被部分金融机构嵌入在投研工具中,从而解放投研人员生产力。最后,在知识复用环节,大模型有助于提升机构内部知识库的检索效率,便利信息调用、减少重复劳动。目前,已经有多家金融科技公司将大模型应用于语音转写、会议纪要、知识检索等功能并切入到资产管理领域中。
以上是大模型在金融领域应用现状的梳理。
随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
以上的AI大模型学习资料,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。