R绘散点图+误差线+显示回归线和R2

library(readxl)
mydata<- read_excel("F:/Study data/Drawing/Predict Model/Predict_Annual_O3.xlsx")
library(ggplot2)
p <- ggplot(mydata,aes(x=O3,y=Predict_O3_Annual)) + geom_point()###注意根据导入excel表修改x,y
p + stat_smooth(method='lm',formula = y~x+ I(x),colour='blue')  + theme(axis.text=
<think>嗯,用户想用Python制符合线性回归模型的散点图,还提到了示例代码,使用matplotlibseaborn。我需要根据提供的引用资料来整理步骤代码。首先,我应该看看用户提供的引用内容,里面有关于线性回归散点图制方法。 引用[1]提到使用seaborn的lmplot函数,可以在多子图中展示不同分组的回归线。引用[2]则具体说明了用seabornmatplotlib回归线置信区间的方法,还提到了sklearn的线性回归模型。引用[3]是关于多元线性回归模型的,可能相关但可能更复杂。引用[4]展示了带线性回归最佳拟合线的散点图,使用了pandas、matplotlibseaborn,并且提到了抖动图。 我应该分步骤来回答。首先,使用seaborn的lmplot最简单,因为它自动回归线置信区间。然后,用matplotlib结合sklearn手动拟合模型并图,这样更灵活。可能还需要提到数据预处理,比如加载数据,划分训练集测试集,但用户的问题可能更关注图部分。 需要检查引用中的代码示例,比如引用[4]里的代码可能有用。比如导入数据,使用sns.lmplot或者sns.regplot。同时,引用[2]中的代码用了LinearRegression模型,然后手动回归线,这可能适用于自定义的情况。 要注意用户可能需要示例代码,所以每个方法都要给出代码片段。比如,方法一用seaborn的lmplot,方法二用matplotlibsklearn手动实现。还要确保代码正确,比如导入必要的库,加载数据,拟合模型,图。 可能还要提到如何评估模型,如R&sup2;分数,但用户的问题主要是在图,所以这部分可能次要。不过引用[3]提到了评估指标,可以简要提及。 需要确保使用正确的LaTeX格式,比如变量用$...$,独立公式用$$...$$。比如在解释线性回归方程时,写成$y = ax + b$。 还需要生成相关问题,比如如何添加置信区间,如何分组制,或者评估模型性能。根据引用内容,可能的问题包括优化回归线显示、添加置信区间、处理数据重叠等。 总结步骤:1. 使用seaborn的lmplot或regplot快速图;2. 手动使用matplotlibsklearn进行更自定义的图;3. 数据预处理模型评估的提示。代码需要包括数据加载、模型拟合、图设置,并引用对应的参考文献。</think>### 分步解答:使用Python制线性回归散点图 以下是两种常用方法,结合`matplotlib``seaborn`实现线性回归散点图制: --- #### **方法1:使用seaborn的`lmplot`函数(快速制)** `seaborn`的`lmplot`函数可自动拟合线性回归模型并散点图回归线置信区间。 ```python import seaborn as sns import matplotlib.pyplot as plt # 示例数据加载(替换为实际数据) import pandas as pd data = pd.DataFrame({ 'x': [1, 2, 3, 4, 5], 'y': [2, 3.5, 4, 5.2, 6] }) # 制带回归线散点图 sns.lmplot(x='x', y='y', data=data, height=6, aspect=1.5) plt.title("线性回归散点图(seaborn实现)") plt.xlabel("自变量X") plt.ylabel("因变量Y") plt.show() ``` **关键参数说明**: - `ci=95`:设置置信区间范围(默认95%)[^2] - `hue`:按分组制不同颜色回归线[^1] - `scatter_kws`:自定义散点样式(如颜色、透明度) --- #### **方法2:使用matplotlib+sklearn(自定义灵活)** 通过`sklearn`拟合回归模型,再用`matplotlib`手动制图形。 ```python import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression # 生成示例数据 x = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) y = np.array([2, 3.5, 4, 5.2, 6]) # 拟合线性模型 model = LinearRegression() model.fit(x, y) y_pred = model.predict(x) r2 = model.score(x, y) # 散点图回归线 plt.figure(figsize=(8, 6)) plt.scatter(x, y, color='blue', label='实际值') plt.plot(x, y_pred, color='red', linewidth=2, label=f'回归线 ($R^2={r2:.3f}$)') plt.title("线性回归散点图(matplotlib实现)") plt.xlabel("自变量X") plt.ylabel("因变量Y") plt.legend() plt.grid(True) plt.show() ``` **扩展功能**: - 添加置信区间:使用`seaborn.regplot`的`ci`参数或手动计算预测区间 - 数据抖动:对重叠数据点添加`jitter`参数(如`sns.stripplot`)[^4] --- ### **注意事项** 1. **数据预处理**:确保数据无缺失值,必要时标准化或归一化[^3] 2. **模型评估**:通过$R^2$、均方误差(MSE)等指标量化拟合效果[^3] 3. **图形优化**:调整点透明度(`alpha`)、添加回归方程文本等提升可读性[^4] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值