最短路常用算法

最短路的专有名词:

源点: 表示起点
汇点: 表示终点
稀疏图: 点数和边数在同一个量级
稠密图: 边数和点数的平方在同一个量级

注意:

求最短路的要求的是该图不能含有负环, 如果图中有负环, 那么我们可以一直在这个负环中走无穷多次, 那么我们的最短路的值就会变成负无穷。

单源最短路和多源最短路有什么区别?

单源最短路: 求的是固定的一个起点, 到它所有能到的点之间的距离。
多源最短路: 求的是起点不固定, 即任意两个点之间的距离
请添加图片描述


普素版dijkstra

思路:

请添加图片描述

模版:
int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

题目1: Dijkstra求最短路 I
分析:

1. 为什么g数组要进行初始化成正无穷?

因为这里是使用领接表进行存储的,两个点之间只能存储一个数字, 题目中说明了这道题是有重边的, 所以我们保留的较小的那一条,
如果两个点之间是正无穷说明了两个点之间不可达。

2. 判断终点(n号点) 能否到达起点(1号点), 是判断dist[n] == 0x3f3f3f3f, 还是 dist[n] > 0x3f3f3f3f / 2

用哪个方式进行判断主要和两个方面有关: 1. 图是用什么方式进行存储? 2. 是否有负权边?

根据不同的算法, 图也可以使用不同的存储方式进行存储? 可以使用领接表, 邻接矩阵进行存储。在bellman_ford算法中还可以使用结构体存下两条边之间的关系 。

若用邻接矩阵进行存储,

//更新方式: 
 for(int j = 1; j <= n; j ++)
        {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }

如果有负权边,那么我们应该使用dist[n] > 0x3f3f3f3f / 2进行判断1号点和n号点是否连通。
但是因为dijkstra算法要求是没有负权边的, 所以如果n号点和1号点是不联通的, 则dist[n]不会变小, 则dist[n]还是保留初始化 0x3f3f3f3f

若用邻接表进行存储: 只会更新它能够到达的点, 如果1号点到达不了n好点, 则n号点的距离仍然依旧是初始化时的0x3f3f3f3f。

若用结构体进行存储: 只要两条边之间能到达就会被更新, 所以如果权值为负数可能会造成dist[n] < 0x3f3f3f3f, 但是n号点和一号点依旧不可到达, 所以要使用dist[n] > 0x3f3f3f3f / 2来判断进行判断1号点和n号点是否连通。

时间复杂度: O ( n 2 ) O(n ^ 2) O(n2)
代码区:
#include<iostream>
#include<cstring>

using namespace std;

const int N = 510;

int n, m;
int g[N][N];
bool st[N];
int dist[N];

void dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for(int i = 0; i < n; i ++)
    {
        int t = -1;
        for(int j = 1; j <= n; j ++)
        {
            if(!st[j] && (t == -1 || dist[t] > dist[j]))
            {
                t = j;
            }
        }
        st[t] = true;
        
        for(int j = 1; j <= n; j ++)
        {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }
    }
    
}

int main()
{
    cin >> n >> m;
    
    memset(g, 0x3f, sizeof g);
    while(m --)
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = min(g[a][b], c);
    }
    
    dijkstra();
    
    if(dist[n] == 0x3f3f3f3f) cout << -1;
    else cout << dist[n];
    
    
    return 0;
}



堆优化版的dijkstra

思路:

请添加图片描述

请添加图片描述

时间复杂度:O(mlogn), n 表示点数,m 表示边数
模版:
typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


题目1: Dijkstra求最短路 II
分析:
时间复杂度:
代码区:
#include<iostream>
#include<cstring>
#include<queue>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 1.5e5 + 10;

int n, m;
int h[N], e[N], ne[N], w[N], idx;
bool st[N];
int dist[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
    
}

void dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});
    
    while(heap.size())
    {
        auto t = heap.top();
        heap.pop();
        
        int ver = t.y, distance = t.x;
        if(st[ver]) continue;
        st[ver] = true;
        
        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
        
    }
    
}

int main()
{
    memset(h, -1, sizeof h);
    cin >> n >> m;
    while(m --)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    dijkstra();
    
    if(dist[n] == 0x3f3f3f3f) cout << -1;
    else cout << dist[n];
    
    
    return 0;
}


bellman_ford算法

思路:

两重循环:

  1. 循环所有的点
  2. 循环所有的边

请添加图片描述

时间复杂度: O ( n ∗ m ) O(n * m) O(nm)
模版:
int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

题目1: 有边数限制的最短路
分析:

如果只是用来求有负权边的情况下, 起点到终点的最短距离, 那么我们是会用spfa, 而不是用bellman_ford,因为时间复杂度上spfa最坏是O(n * m), 而bellman_ford就是O(n * m)。但是bellman_ford可以用来求解一类问题:有边数限制的最短路。 注意的是这种做法的话我们需要开一个备份数组。

时间复杂度: O ( n ∗ m ) O(n * m) O(nm)
代码区:
#include<iostream>
#include<cstring>

using namespace std;

const int N = 510, M = 10010;

int n, m, k;
struct Edge
{
    int a, b, c;
}edges[M];
int dist[N], backup[N];

void bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for(int i = 0; i < k; i ++)
    {
        memcpy(backup, dist, sizeof dist);
        for(int j = 0; j < m; j ++)
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].c;
            dist[b] = min(dist[b], backup[a] + w);
        }
    }
    
}

int main()
{
    cin >> n >> m >> k;
    
    for(int i = 0; i < m; i ++)
    {
        int a, b ,c;
        cin >> a >> b >> c;
        edges[i] = {a, b, c};
    }
    
    bellman_ford();
    
    if(dist[n] > 0x3f3f3f3f / 2) puts("impossible");
    else cout << dist[n];
    
    return 0;
}


spfa

思路:

请添加图片描述

时间复杂度: 平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m 表示边数
模版:
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
题目1:spfa求最短路
分析:
时间复杂度:
代码区:
#include<iostream>
#include<cstring>

using namespace std;

const int N = 1e5 + 10;

int n, m;
int h[N], e[N], ne[N], w[N], idx;
int dist[N];
bool st[N];
int q[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

void spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    st[1] = 0;
    int hh = 0, tt = 0;
    q[0] = 1;
    
    while(hh <= tt)
    {
        int t = q[hh ++];
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if(!st[j])
                {
                    q[++ tt] = j;
                    st[j] = true;
                }
            }
        }
    }
    
    
}

int main()
{
    memset(h, -1, sizeof h);
    cin >> n >> m;
    
    while(m --)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    spfa();
    if(dist[n] == 0x3f3f3f3f) puts("impossible");
    else cout << dist[n];
    
    
    return 0;
}

判断负环:

spfa 和 bellman_ford 都可以用来判断负环, 和时间复杂度有关, 我们一般使用spfa进行判断负环。

时间复杂度: O ( n ∗ m ) O(n * m) O(nm)
模版:
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
题目1: spfa判断负环
分析:
时间复杂度: O ( n ∗ m ) O(n * m) O(nm)
代码区:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>

using namespace std;

const int N = 2010, M = 10010;

int h[N], ne[M], e[M], idx, w[M];
int dist[N];
bool st[N];
int cnt[N];
int n, m;

void add(int a, int b, int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx ++;
}

bool spfa()
{
   queue<int> q;
    
    for(int i = 1; i <= n; i ++)
    {
        q.push(i);
        st[i] = true;
    }
    
    while(q.size())
    {
        auto t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if(cnt[j] >= n) return true;
                if(!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return false;
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    
    while(m --)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    if(spfa()) puts("Yes");
    else puts("No");
    
    return 0;
}

floyd

floyd可以求出任意两点的最短距离,缺点是时间复杂度较高
题目1:floyd求最短路
时间复杂度: O ( n 3 ) O(n^3) O(n3)
代码区:
#include<iostream>
#include<cstring>

using namespace std;

const int N = 210;

int n, m, k;
int d[N][N];

void floyd()
{
    for(int k = 1; k <= n; k ++)
    {
        for(int i = 1; i <= n; i ++)
        {
            for(int j = 1; j <= n; j ++)
            d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
        }
    }
    
    
}

int main()
{
    cin >> n >> m >> k;
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= n; j ++)
        {
            if(i == j) d[i][j] = 0;
            else d[i][j] = 0x3f3f3f3f;
        }
    }
    
    while(m --)
    {
        int a, b, c;
        cin >> a >> b >>c;
        d[a][b] = min(d[a][b], c);
    }
    
    floyd();
    
    while(k --)
    {
        int a, b;
        cin >> a >> b;
        if(d[a][b] > 0x3f3f3f3f / 2) puts("impossible");
        else cout << d[a][b] << endl;
    }
    
    
    return 0;
}
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值