有 N 个村庄,编号 1 到 N。
村庄之间有 M 条无向道路,第 i 条道路连接村庄 ai 和村庄 bi,长度是 ci。
所有村庄都是连通的。
共有 K 个村庄有商店,第 j 个有商店的村庄编号是 xj。
然后给出 Q 个询问,第 k 个询问给出一个村庄的编号 yk,问该村庄距离最近的商店有多远?
输入格式
第一行包含两个整数 N,M。
接下来 M 行,每行包含三个整数 ai,bi,ci,表示第 i 条道路连接村庄 ai 和村庄 bi,长度是 ci。
再一行包含整数 K。
接下来 K 行,每行包含一个整数 xj,表示第 j 个有商店的村庄编号是 xj。
再一行包含整数 Q。
接下来 Q 行,每行包含一个整数 yk,表示询问编号为 yk 的村庄与其距离最近的商店之间的距离。
输出格式
对于每个询问,输出该询问的结果。
数据范围
2≤N≤105,
N−1≤M≤min(
N
(
N
−
1
)
2
\frac{N(N−1) }{2}
2N(N−1),105),
1≤Q≤105,
1≤K≤N,
1≤ci≤10000
输入样例:
7 7
1 2 5
1 4 3
2 3 2
2 5 1
3 6 7
5 6 8
6 7 6
3
7
5
4
7
1
2
3
4
5
6
7
输出样例:
3
1
3
0
0
6
0
思路分析
如果每一次都从询问的村庄出发,去求该村庄与其距离最近的商店之间的距离的话时间复杂度会大大提升。从而导致超时。这时可以使用逆向思维解决该问题,即建立一个超级源点,添加超级源点到各个商品之间的有向边(红色的边),其权值为0,那个该问题就转变成了求超级源点到各点的最短路径问题。使用spfa算法求即可。
#include <iostream>
#include<queue>
#include<cstring>
using namespace std;
int n,m;
/*h数组是邻接表的头它的下标是当前结点的编号,值是当前结点第一条边的编号(其实是最后加入的那一条边),
e数组是边的集合,它的下标是当前边的编号,数值是当前边的终点。ne是nextedge,如果ne是-1表示当前结点没有下一条边,
ne的下标是当前边的编号,数值是当前结点的下一条边的编号,idx记录下一个要分配的边的编号,
如果还是不明白,先学习链式前向星后再看本文效果会更佳
*/
int h[100005],e[300005],ne[300005],w[300005],idx;
int dist[100005];//dist[i]表示0号点走到i号点的最短距离
bool visit[100005];//visit[i]表示第i个结点是否在队列中
void add(int u,int v,int p){//注意:当前边的编号为idx
e[idx]=v;//边的终点为v
w[idx]=p;//边的权值为p
ne[idx]=h[u];//当前边的下一条边为旧邻接表的头
h[u]=idx++;//邻接表的头存储当前边的编号
}
void spfa(){
//将0号点走到所有点的最短距离都初始化为0x3f3f3f3f,因为是按字节初始化的,即每个字节都初始化为0x3f
memset(dist,0x3f,sizeof dist);
dist[0]=0;//0号点(超级源点)到自己的距离为0
queue<int> q;
q.push(0);//将0号点压入队中
visit[0]=1;//标记0号点已经在队列内
while(q.size()){//队列不为空则循环
int u = q.front();//取出队头元素
q.pop();//弹出队头元素
visit[u]=0;//标记u号点已出队
//遍历以u为起点的每一条边
for(int i=h[u];i!=-1;i=ne[i]){
int v=e[i];//获得当前边的终点
//如果借助<u,v>这条边能使到达点v的最短距离变小
if(dist[v]>dist[u]+w[i]){
dist[v]=dist[u]+w[i];//更新到达v点的最短距离
//因为到达v点的最短距离已经变小,其相邻的点的最短距离也可能因此而变小
//所以将其压入队中去更新其相邻的点的最短距离
if(!visit[v]){//注意点:v不在队列里才进队,这里漏写
q.push(v);
visit[v]=1;//标志v号点已经在队列内
}
}
}
}
}
int main()
{
cin>>n>>m;
//邻接表的头全部初始化为-1,-1会随着插入的边而往后移,
//这也是上面为什么用-1作循环条件的原因for(int i=h[u];i!=-1;i=ne[i])
memset(h,-1,sizeof h);//注意点:这里漏写导致死循环
int a,b,c;
while(m--){//输入m条边
cin>>a>>b>>c;
add(a,b,c);//因为是无向边,所以要插入两条边
add(b,a,c);
}
cin>>m;
while(m--){//输入k(题目中的变量K)个商店的信息
cin>>a;//建立超级源点到每个商店的路径
add(0,a,0);//因为只需从超级源点走出去所以建立单向边即可
}
spfa();
cin>>m;
while(m--){//输入Q个询问
cin>>a;
cout<<dist[a]<<endl;
}
return 0;
}